
Hands On AGK BASIC: String and Math Functions� 231

String and Math Functions

In this Chapter:

T Standard String-Handling Functions

T	Adding New String-Handling Functions

T Updating the StringLibrary File

T Understanding Cartesian Coordinates	

T Math Functions

T Using sin() and cos() to Calculate Coordinates

232� Hands On AGK BASIC: String and Math Functions

String Functions

Introduction
Unlike numeric variables which hold only a single value, strings can hold a whole
collection of characters, perhaps several words or even sentences. For example, it’s
quite valid to store a line of text in a string variable with a statement such as:

	poem$ = “Mary had a little lamb”

Because a string can contain so many characters, there are several operations that
programmers find themselves needing to do with strings. For example, we might
want to find out how many characters are in a string, convert a string to uppercase,
or extract part of a string.

AGK BASIC contains a number of string-handling functions as part of the core
language. These functions are listed and explained in the first part of this chapter.

String-Handling Functions
Len()

The Len()function returns the number of characters in a string. The string to be
examined is given in parentheses. For example, the expression

	Len(“Hello”)

would return the value 5 since there are 5 characters in the word Hello.

Spaces and any other non-alphabetic symbols within a string also count as characters,
so the line

	Len(“Hello, world?”)

would return the value 13, since it will include the comma, space and question mark
in the count.

The Len() function has the format shown in FIG-9.1.

where :

	 string		 is a string constant, string variable, or string expression.

As with any function that returns a value, this value can be displayed, assigned to a
variable, or used in an expression. Hence each of the following lines are valid:

	Print(Len(“Hello”))			 ‘displays 5
	result = Len(“Hello”)		 ‘sets result equal to 5
	ans = Len(“Hello”) *3		 ‘sets ans to 15 (5 x 3)
	if Len(“Hello”) > 3			 ‘condition is true since 5 > 3

Of course, it’s much more likely that you’ll use a string variable as an argument
rather than a string constant.

FIG-9.1

Len() Len (string)integer

Hands On AGK BASIC: String and Math Functions� 233

Notice that in order to use the RandomString() function, it is necessary to add a

	#include “StringLibrary.agc”

command at the start of the program.

Upper()

The Upper() function takes a string argument and returns the uppercase version of
that string. For example, the line

	Print(Upper(“Hello”))

would display the word HELLO.

Any characters in the string that are not letters are returned unchanged by this
statement. Hence,

	Print(Upper(“Abc123”))

would display ABC123.

Activity 9.1

In this Activity we are going to make use of our StringLibrary.agc file which we
placed in the Library folder in the last chapter.

Start a new project called TestLen. Compile the default code.

Using Windows Explorer, make a copy of the StringLibrary.agc file found at
HandsOnAGK/Library and paste it into the TestLen folder.

Modify the contents of main.agc to read:

	 rem *** Test Len() Function ***
	 rem *** Include Library function ***
	 #include “StringLibrary.agc”

	 rem *** Generate string ***
	 text$ = RandomString(-1)
	 rem *** Print string and its length ***
	 Print(text$)
	 Print(Len(text$))
	 Sync()
	 do
	 loop

Test and save your program.

Activity 9.2

What would be the value of b$ after the following lines are executed?

	 a$ = “1-by-1”
	 b$ = Upper(a$)

234� Hands On AGK BASIC: String and Math Functions

The Upper()statement has the format shown in FIG-9.2.

where:

	 string		 is any string value.

Lower()

The Lower()function takes a string argument and returns the lowercase version of
that string. Any non-alphabetic characters in the string are returned unchanged.

	Print(Lower(“Hello”))

would display the word hello.

This statement has the format shown in FIG-9.3.

where:

	 string		 is any string value.

Left()

It’s possible to extract the left-hand section of a string using the Left() function. This
time you need to include two parameters: the first is the string itself, and the second
is the number of characters you want to extract. For example,

	Print(Left(“abcdef”,2))

would display ab on the screen, Left() having returned the left two characters from
the string abcdef.

If the number given is larger than the number of characters in the string as in

	ans$ = Left(“abcdef”,10)

then the complete string is returned (i.e. abcdef)

Should a zero, or negative value be given as in

	result$ = Left(“abcdef”,0)

then the returned string contains no characters. That is, result$ will hold an empty
string.

The Left() function has the format shown in FIG-9.4.

where:

	 string		 is any string value.

FIG-9.2

Upper() Upper (string)string

FIG-9.3

Lower() Lower (string)string

FIG-9.4

Left()

Left (string)string inum

Hands On AGK BASIC: String and Math Functions� 235

	 inum		 is a positive integer value giving the number of characters to be
 			 copied. It should be in the range 0 to the number of characters in
			 the string.

Right()

If we want to extract the right-hand part of a string we can use the Right() function.
For example, the statement

	Print(Right(“abcdef”,2))

would display ef on the screen.

The statement has the format shown in FIG-9.5.

where:

	 string		 is any string value.

	 inum		 is a positive integer value giving the number of characters to be
 			 copied. It should be in the range 0 to the number of characters in
			 the string.

Mid()

This statement extracts a substring from the specified string. The position of the first
character and the number of characters to be extracted is given as the second and third
arguments to the function. For example, the statement

	letter$ = Mid(“abcdef”,4,2)

would place the value de in letter$ (extracts 2 characters starting at the 4th character
in the string). We can use this statement to access each character in a string. For
example, the code snippet

	text$ = RandomString(-1)
	for c = 1 to Len(text$)
		 Print(Mid(text$,c,1))
	next c
	Sync()

will display each character of the string stored in text$ on a separate line.

FIG-9.5

Right()

Right (string)string inum

Activity 9.3

Create a new project, Letters, which makes use of the code above to display
a generated string and then displays the individual characters of the string.
Remember to copy the StringLibrary.agc file into the project folder and add a
#include instruction to your code.

Modify the program so that the characters are displayed in reverse order on a
single line.

Change the program so that, rather than display the characters, it counts how
many E’s are in the string.

236� Hands On AGK BASIC: String and Math Functions

The format for the Mid() statement is given in FIG-9.6.

where:

	 string		 is any string value.

	 ipost		 is a positive integer giving the position of the first character to
			 be extracted. Range 1 to length of string.

	 inum		 is a positive integer giving the number of characters to be
			 copied.

Asc()

This function returns an integer value representing the ASCII value of the first
character in the string supplied. A typical statement such as

	Print(Asc(“ABC”))

would display the value 65 since that is the ASCII code for a capital A. Using this
function on an empty string as in the line

	result = Asc(“”)

returns the value zero.

The format for this statement is given in FIG-9.7.

where:

	 string		 is any string value, but only the first character is used by the
			 function.

Chr()

The Chr() function complements the Asc() function by returning the character
whose ASCII code matches the specified value. For example, the line

	Print(Chr(65))

would display a capital letter A since the ASCII code for a capital A is 65.

The value given should lie between 0 and 127. However, only characters with an
ASCII code of 32 to 126 are displayable; other values are used for various control
purposes and attempting to display such values has no visible effect in AGK BASIC.

We could display all the letters of the alphabet in uppercase using the lines:

	for c = 1 to 26
		 Print(Chr(64+c))
	next c
	Sync()

FIG-9.6

Mid() Mid (string)string ipost inum

ASCII character codes
are given in Appendix
A at the end of the
book.

FIG-9.7

Asc() Asc (string)integer

ASCII 32 is the space
character. So although
it is displayable,
there’s not much to
see!

Hands On AGK BASIC: String and Math Functions� 237

The format for this statement is given in FIG-9.8.

where:

	 ivalue		 is an integer value. This value must be between 0 and 127, but
			 is more likely to be between 32 and 126, these being the ASCII
			 range of values for all displayable characters.

Str()

The Str() function takes a numeric argument and returns a string containing the
same digits as the argument. For example, the line

	result$ = Str(123)

will store the string 123 in the variable result$

When converting a real value, the number of decimal places required can be specified,
as in the line

	value$ = Str(12.326,2)

which will store 12.33 in value$. Note that the last digit is rounded.

Perhaps the most useful application of this function is to simplify output involving
several values. For example, in past programs we have had to write code such as:

PrintC(“My number was : “)
Print(dice)
PrintC(“Your guess was : “)
Print(guess)

Using the Str() function we can now rewrite this as:

Print(“My number was : “ + Str(dice))
Print(“Your guess was : “ + Str(guess))

This statement has the format shown in FIG-9.9.

where:

FIG-9.8

Chr()

Chr (ivalue)string

Activity 9.4

Create a new project called ASCIITable.

Code the program so that it displays the numbers 32 to 126 and, beside each
number, the corresponding ASCII character.

Get the program to pause after every 25 characters, waiting for 5 seconds
before continuing.

Test and save your program.

The + operator is used
to join two strings.

FIG-9.9

Str() Str (value)string iplaces

238� Hands On AGK BASIC: String and Math Functions

	 value		 is any numeric value.

	 iplaces	 is an integer value giving the number of decimal places to be
			 stored.	

Val()

This function takes a string argument and returns the integer equivalent. The string
should contain only numeric characters. For example, executing the line

	result = Val(“123”)

will store the value 123 in the variable result.

If the string contains a real value, only the integral part will be converted. So the line

	ans# = Val(“123.45”)

gives ans# a value of 123.0 when displayed.

If the string contains a mixture of numeric and non-numeric characters, the value
returned is constructed from all numeric characters preceding the first non-numeric
character. For example, the call

	Val(“12ABC3”)

returns the value 12.

If the string starts with a non-numeric character (other than a sign or decimal point)
then the function returns zero.

The string may hold a value which represents a number in a different number base.
But when the value is not a base 10 number, we need to add a second parameter
giving the number’s base. So for example, we could convert a string representing a
hexadecimal number using the line:

	num = Val(“FE”,16)

 which would store the value 254 (the decimal equivalent of FE16) in num.

Although the most obvious number bases for a computer system are 2 (binary), 16
(hexadecimal) and 8 (octal), you can have any integer base you wish. For example,
the statement

	v = Val(“210”,3)

Activity 9.5

Start a new project called CountZero and write a program to generate a random
number between 1000 and 65000 which displays the number generated and a
count of how many zeros are in that number.

(HINT: Convert the number to a string then count the number of zeros in that
string.)

Test and save your project.

Hands On AGK BASIC: String and Math Functions� 239

states that 210 is a base 3 number and therefore v will be set to 21 (2*9+1*3+0*1).

The Val() function has the format shown in FIG-9.10.

where:

	 string		 is a string containing only numeric characters, a decimal point,
			 or a sign (+ or -).

	 ibase		 is an positive integer value giving the number base.

ValFloat()

To convert a string to a real number, use ValFloat() (see FIG-9.11).

where:

	 string		 is a string containing only numeric characters, a decimal point,
			 or a sign (+ or -).

Space()

Although it is easy enough to create a string full of spaces with a line such as

	text$ = “ ”

if you want an exact number of spaces in your string, then it’s easier to use the
Space() function which returns a string containing a specified number of spaces.

	text$ = Space(23)

assigns a string containing 23 spaces to the variable text$. The format for this
statement is shown in FIG-9.12.

where:

	 ivalue		 is a positive integer which specifies the number of spaces in the
			 string returned by the function.

Bin()

As you know, the computer uses the binary number system when storing programs
and data. If you’d like to see what a specific integer value looks like in binary, this
function will do the job for you. It returns a string showing the binary representation
of a specified integer value. For example, the instruction

	binary$ = Bin(65)

would assign the string 1000001 (the binary equivalent of 65) to the variable binary$.

FIG-9.10

Val() Val (string)integer ibase

FIG-9.11

ValFloat()

ValFloat (string)float

FIG-9.12

Space() Space (ivalue)string

240� Hands On AGK BASIC: String and Math Functions

If a negative value is used, the string returned is in 2’s complement form. This means
that the instruction

	Print(Bin(-65))

would display the string 11111111111111111111111110111111. The format for the
Bin()function is shown in FIG-9.13.

where:

	 ivalue		 is an integer value.

Hex()

Another widely used number system is hexadecimal which uses the letters A to F to
represent values 10 to 15. The Hex() function returns a string containing the
hexadecimal equivalent of a specified integer value. For example,

	hexadecimal$ = Hex(65)

assigns the string 41 to the variable hexadecimal$.

For negative values, the hexadecimal string returned is the equivalent of the 2’s
complement form. Therefore,

	Print(Hex(-15))

displays the string FFFFFFF1.

The format of this function is shown in FIG-9.14.

where:

	 ivalue		 is an integer value.

CountStringTokens()

The string red,green,blue,yellow contains the names of four colours, each name
being separated by a comma. AGK refers to each of the terms in the string as tokens
(similar to the idea of tokens within a line of program code) and the character used
to separate those tokens (in this case, a comma) as a delimiter.

It doesn’t matter what characters make up a token, nor which character is used as a
delimiter. In fact, you can use several different delimiters in the same string.

FIG-9.13

Bin()

Bin (ivalue)string

FIG-9.14

Hex() Hex (ivalue)string

Activity 9.6

Create a new project, Conversions.

Use the Button functions to read in an integer value and then display the
equivalent binary and hexadecimal value. Test and save your project.

The three Buttons files
can be found in the
TestButtons project.

Hands On AGK BASIC: String and Math Functions� 241

The function CountStringTokens() can be used to find out how many tokens are in
a specified string. The statement has the format shown in FIG-9.15.

where

	 string		 is a string containing the characters to be processed.

	 sdelimits	 is a string giving the delimiters to be assumed when identifying
			 the tokens.

For example, the statement

	Print(CountStringTokens(“red,green,blue,yellow,white”,”,”))

will display the value 5.

The line

	Print(CountStringTokens(“1/2:3|4”,”/:|”))

will display the value 4. In this case any of the characters / : or | are taken as delimiters.

GetStringToken()

To extract the identified tokens from a string we can use the GetStringToken()
statement (see FIG-9.16).

where

	 string		 is a string containing the characters to be processed.

	 sdelimits	 is a string giving the delimiters to be assumed when identifying
			 the tokens.

	 indx		 is an integer giving the number of the token to be returned (the
			 first token is at position 1).

For example, the line

	Print(GetStringToken(“red/green/blue/yellow”,”/”,3))

would display the term blue (the third token in the string).

The program in FIG-9.17 displays the number of tokens in a string and then lists them
separately.

FIG-9.15

CountStringTokens() CountStringTokens ()string sdelimitsinteger

FIG-9.16

GetStringToken() GetStringToken ()string sdelimits indxstring

FIG-9.17

Using the StringToken
Functions

rem *** Using Tokens ***

rem *** Set string and delimiters ***
quote$ = “It is a truth universally acknowledged, that a single
man in possession of a good fortune, must be in want of a wife”
delimiters$=” ,” //Space and comma

242� Hands On AGK BASIC: String and Math Functions

Creating Your Own String Functions
There are several more operations which would be useful to have when manipulating
strings, and, although AGK BASIC does not contain commands to perform these
operations, we can easily write them ourselves. Some of these are described below.

Pos()

The Pos() function returns the position of a specified character in a specified string.
For example, the line

	place = Pos(“abcd”,”c”)

would assign the value 3 to place, since c occurs at position 3 in the string abcd.

If the character being searched for occurs more than once in the string, then it is the
position of the first occurrence that is returned. Hence, the call

	Pos(“abcdc”,”c”)

would return the value 3, not 5. If the character being searched for does not occur
within the string, then a value of 0 is returned. The mini-spec for this function is:

FIG-9.17
(continued)

Using the StringToken
Functions

rem *** Get and display token count ***
tokens = CountStringTokens(quote$,delimiters$)
Print(tokens)

rem *** Display each token ***
for c = 1 to tokens
 Print(GetStringToken(quote$,delimiters$,c))
next c
Sync()
do
loop

Activity 9.7

Start a new project called Tokens and implement the code given in FIG-9.17.

Test your code. Test the program again with a quote and delimiters with options
of your own. Save your project.

FUNCTION NAME	 :	 Pos

PARAMETERS
	 In					 :	 s 		 : string
							 f		 : character
	 Out				 :	 result	 : integer

PRE-CONDITION	 :	 None

DESCRIPTION		 :	 result is set to the position at which f first occurs in
							 s.
							 If f does not occur in s, then result is set to zero.

Hands On AGK BASIC: String and Math Functions� 243

The code for this function is shown in FIG-9.18.

Because AGK BASIC allows only string variables and not single character ones (as
some other languages offer), we cannot be sure that when the function Pos() is called,
the second argument, f$, contains only a single character. For example, the line

	result = Pos(“abcdef”,”ei”)

would be valid, even though there is more than one character in the second parameter.
But by including the line

	first$ = Mid(f$,1,1)

in the code for Pos(), we extract the first character from f$. It is this first character
that we then search for in s$.

Pos() is another function that could prove useful in later projects, so it will be worth
adding its code to the StringLibrary.agc file in the Library folder.

The only thing we have to watch out for here is that we paste the code into the
original StringLibrary.agc file held in the Library folder. FIG-9.19 shows how to

FIG-9.18

The Pos() Function’s
Code

rem *** Find Position of character in string ***
	
function Pos(s$, f$)
	 rem *** result stays at 0 if no match found ***
	 result = 0
	 rem *** Make sure we’re looking for a single character ***
	 first$ = Mid(f$,1,1)
	 rem *** FOR each character in s$ DO ***
	 for c = 1 to Len(s$)
		 rem *** IF that character matches what we’re after THEN ***
	 	 if Mid(s$,c,1) = first$
			 rem *** Set result to this position and exit loop ***
			 result = c
			 exit
		 endif
	 next c
endfunction result

Activity 9.8

Start a new project called FunctionTester.

Copy the file StringLibrary.agc from the Library folder into the new project’s
folder.

In main.agc, add the code for function Pos() as given in FIG-9.18.

In the main part of the program, create a random string 30 characters in length
and use a call to Pos() to display the first occurrence of a capital D within the
random string. The generated string should also be displayed so you can check
that the result from Pos() is correct.

Check that Pos() also works when the character searched for cannot be found.

Save your project.

244� Hands On AGK BASIC: String and Math Functions

update the original StringLibrary.agc file.

Occurs()
The Occurs() function returns how often a specified character appears within a

FIG-9.19

Adding a New Function
to StringLibrary.agc

In the Projects Panel, right-click on the
project name and select Add files from
the pop-up menu.

Next, select StringLibrary.agc from the
Library folder.

The file is now included in the Sources
section of the project.

From main.agc, we copy the code for
Pos().

Double clicking on StringLibrary in the
Projects Panel will open the file in
the edit area and we can paste the
code for Pos() to the file.

Finally, selecting File|Save everything
from the main menu will save the
updated StringLibrary file.

Add files...

StringLibrary.agc

Activity 9.9

Update the contents of the StringLibrary.agc file by adding the Pos() function
as described in FIG-9.19.

Hands On AGK BASIC: String and Math Functions� 245

specified string. Hence, the expression

	Occurs(“abcdc”,”c”)

would return 2 since c occurs twice within abcdc. The mini-spec for the routine is:

The code for this function is shown in FIG-9.20.

Insert()

The Insert() function returns a string created by inserting one string into another,
starting at a specified position. For example, the line

	Print(Insert(“abcdef ”,”xy”, 4))

would display the string abcxydef having inserted the string xy into string abcdef
starting at position 4.

If an attempt is made to insert the second string at an invalid position, then the

FUNCTION NAME	 :	 Occurs
PARAMETERS
	 In					 :	 s 		 : string
							 f		 : character
	 Out				 :	 result	 : integer

PRE-CONDITION	 :	 None

DESCRIPTION		 :	 result is set to the number of times f occurs in s.

FIG-9.20

The Occurs()
Function’s Code

rem *** Return how often f$ occurs in s$ ***
function Occurs(s$,f$)
	 rem *** None found so far ***
	 result = 0
	 rem *** Make sure only one character ***
	 first$ = Mid(f$,0,1)
	 rem *** FOR each character in s$ Do ***
 	 for c = 1 to Len(s$)
		 rem *** if it matches req’d character, add 1 to result ***
	 	 if Mid(s$,c,1) = first$
			 result = result + 1
		 endif
 next c
endfunction result

Activity 9.10

Add the code for Occurs() to main.agc in FunctionTester.

In the main part of the program, create a random string 30 characters in length
and use a call to Occurs() to display how often a capital S appears within the
random string. The generated string should also be displayed so you can check
that the result from Occurs() is correct.

Save your project. Add the code for Occurs() to StringLibrary.agc in the
Library folder.

246� Hands On AGK BASIC: String and Math Functions

returned string is an exact match of the first string.

The function’s mini-spec is:

The code for this routine is given in FIG-9.21.

Notice that the main logic in the function involves splitting the first string into two
parts and inserting the second string in between these parts.

Delete()

The Delete() function returns a string created by deleting a specified section of an
original string. For example, the line

FUNCTION NAME	 :	 Insert
PARAMETERS
	 In					 :	 s 		 : string
							 f		 : string
							 p		 : integer
	 Out				 :	 result	 : string

PRE-CONDITION	 :	 None

DESCRIPTION		 :	 result is created by inserting f into s at position p.
							 Normally, p should be in the range 1 to Len(s)+1.
							 If p is outside this range result is set equal to s.

FIG-9.21

The Insert() Function’s
Code

rem *** Returns string with f$ inserted at position p into s$ ***

function Insert(s$,f$,p)
	 rem *** If invalid position, result is original string ***
	 if p < 1 or p > Len(s$)+1
		 result$ = s$
	 else
		 rem *** split s$ into two parts & insert f$ in between ***
		 result$ = Left(s$,p-l)
		 result$ = result$ + f$
		 result$ = result$+ Right(s$,Len(s$)-(p-1))
	 endif
endfunction result$

Activity 9.11

Add the code for Insert() to main.agc in FunctionTester.

In the main part of the program, call Insert() to add XX to ABCDEFGHI
starting at position 2.

Test and save your project.

Also check that the function performs as specified if the insert position given is
invalid.

Add the code for Insert() to StringLibrary.agc in the Library folder.

Hands On AGK BASIC: String and Math Functions� 247

	temp$ = Delete(“abcdefghi”,2,4)

would set temp$ to afghi this being created by removing 4 characters, starting at
position 2, from the original string abcdefghi.

If the start position is invalid, a copy of the original string is returned. If the number
of characters to be deleted is too large, then as many characters as possible are
removed.

The function’s mini-spec is:

Notice how the mini-spec makes use of other string-handling functions to describe
how the value of result is determined. Although more difficult to understand than
plain English, this approach can often lead to a briefer description and will always be
unambiguous.

The code for this routine is given in FIG-9.22.

FUNCTION NAME	 :	 Delete
PARAMETERS
	 In					 :	 s 			 : string
							 st			 : integer
							 num		 : integer
	 Out				 :	 sresult	 : string

PRE-CONDITION	 :	 None

DESCRIPTION		 :	 sresult is equal to s with the num characters deleted
							 starting from position st.
							
							 If st is outside the range 1 to Len(s), sresult is equal
							 to s.
							
							 If num > Len(Right(s,Len(s)-st+1)), sresult is set to
							 Left(s,st-1).

FIG-9.22

The Delete() Function’s
Code

rem *** Returns string created by deleting num chars ***
rem *** from s$ starting at position st ***

function Delete(s$, st, num)
	 rem *** if invalid position, result is original string ***
	 if st < 1 or st > Len(s$)
		 result$ = s$
	 else
 rem *** Set result to the part of s$ to the left of ***
 rem *** the section to be deleted ***
		 result$ = Left(s$, st-1)
		 rem *** IF not deleting to the end of s$, ***
		 rem *** add right section ***
 if st+num-1 <= Len(s$)
 result$ = result$+Right(s$,Len(s$)-(st+num-1))
 endif
	 endif
endfunction result$

248� Hands On AGK BASIC: String and Math Functions

Replace()

The Replace() function is designed to return a string constructed by replacing a single
character at a specified position in an original string. Therefore the line

	ans$ = Replace$(“abcdef”,”x”,4)

sets ans$ equal to abcxef having replaced the fourth character in abcdef with an x.

If an invalid position is specified, then the original string is returned.

Summary
±	The Len() function returns the number of characters in a specified string.

±	The Upper() function returns the uppercase equivalent of a specified string.

±	The Lower() function returns the lowercase equivalent of a specified string.

±	The Left() function returns a left-hand sub-string from a specified string.

±	The Right() function returns a right-hand sub-string from a specified string.

±	The Mid() function returns a specified number of characters from a given
position in a specified string.

±	The Asc() function returns the ASCII code of a specified character.

±	The Chr() function returns the character whose ASCII code matches a
specified value.

±	The Str() function returns the string equivalent of a specified number.

±	The Val() function returns the numeric equivalent of a specified string.

Activity 9.12

Add the code for Delete() to main.agc in FunctionTester.

In the main part of the program, call Delete() to delete from position 3 the next
5 characters. Use ABCDEFGHI as the string.

Test and save your project.

Also check that the function performs as specified if the start position given is
invalid and when more characters than available are to be deleted.

Add the code for Delete() to StringLibrary.agc in the Library folder.

Activity 9.13

Create a mini-spec for the Replace() function.

Using the FunctionTester project, write code for the Replace() function and
then test your coding.

Add the code for Replace() to StringLibrary.agc in the Library folder.

Hands On AGK BASIC: String and Math Functions� 249

±	The Space() function returns a string containing a specified number of spaces.

±	The Bin() function returns a string representing the binary equivalent of a
specified integer.

±	The Hex() function returns a string representing the hexadecimal equivalent of
a specified integer.

±	Use CountStringTokens() to count the number of tokens in a string.

±	Use GetStringToken() to extract a specific token from a string.

250� Hands On AGK BASIC: String and Math Functions

Math Functions

Introduction
A second important group of standard programming functions is the math functions.
All of the math functions not previously covered are given here.

Coordinates
In 2D coordinate geometry objects are positioned by specifying x,y Cartesian
coordinates (see FIG-9.23).

From FIG-9.22 we can see that the origin is the position where the two axes cross and
that the axes split the area into four quadrants:

±	quadrant 1: both x and y values are positive

±	quadrant 2: x values are negative and y values positive

±	quadrant 3: both x and y values are negative

±	quadrant 4: x values are positive and y values negative

However, on a computer screen, the y axis has been turned upside down so that
positive y values are at the bottom while negative y values are at the top (see FIG-
9.24). Also, the top-left point on the screen is taken as the origin so a screen displays
only quadrant 1 points.

This modification changes the position of the four quadrants. We’ll be using this
inverted coordinate system, since that’s the one we need when creating games.

FIG-9.23

Cartesian Coordinates

x-axis

y-axis

+y

-y

+x-x
(7,4)

(-2,9)

(17,-5)(-4,-6)

Quadrant 1Quadrant 2

Quadrant 3 Quadrant 4

The origin
(0,0)

FIG-9.24

Screen Coordinates

The area shown as the
screen is not to scale.

x-axis

y-axis

-y

+y

+x-x
(7,-4)

(-2,-9)

(17,5)(-4,6)

Quadrant 1Quadrant 2

Quadrant 3 Quadrant 4

Screen

Hands On AGK BASIC: String and Math Functions� 251

Trigonometric Functions
Cos()

If we draw a line starting at the origin which is exactly one unit in length at an angle
of 30o to the x-axis, then we create the setup shown in FIG-9.25.

We know that one end of the line has the coordinates (0,0), but what are the coordinates
of the other end? We’ll start by examining the x-coordinate. From FIG-9.26 we can
see that the x-coordinate of the end point changes as we rotate the line to 70o from
the x-axis and finally to 90o.

FIG-9.25

Measuring Angles

-y

+y

+x-x
1

1

-1

-1

30o
1 unit

FIG-9.26

X-Coordinate
Determined by Angle

Before the line is rotated, the second
end’s x-coordinate is 1.

As the line is rotated that x-coordinate
becomes less than 1...

... and the further it rotates, the smaller
the x-coordinate becomes ...

...until, at 90o, it is zero.

-y

+y

+x-x
1

1

(0,0) (1,0)= 1

-y

+y

+x-x
1

1

(0,0)

x < 1

-y

+y

+x-x
1

1

(0,0)

Reducing
towards zero

-y

+y

+x-x
1

1

(0,0)

x-coord = 0

252� Hands On AGK BASIC: String and Math Functions

Although it is easy enough to work out the x-coordinate when the line lies along one
of the axes, things are a bit more difficult when some other angle of rotation is
involved. Luckily for us, someone worked all the x-coordinates for every possible
angle several hundred years ago and called it the cosine of the angle (often shortened
to cos).

So, if we draw a line starting at the origin which is 1 unit in length and rotate it by an
angle of theta (θ), then the x-coordinate for the other end of that line is given by the
expression

	 cosine(θ) or cos(θ)

If we rotate our line by more than 90o it moves into quadrant 2 and the x-coordinate
will become negative. As we pass 180o and move into quadrant 3, the x-coordinate
remains negative, but after 270o, the x-coordinate is once again positive.

Activity 9.14

What would be the x-coordinate of the line if it was rotated to

	 a) 0o			 b) 90o

Activity 9.16

By using the cosine function in Calculator, determine the x-coordinates of the
lines shown below (all lines start at the origin and are 1 unit in length).

-y

+y

+x-x

50

168

213

304

o

o

o

o

A

B

C

D

Activity 9.15

Load up Microsoft’s Calculator program.

Choose View|Scientific. Make sure it is using decimal and degrees.

By calculating the cosine of the following angles (to 3 decimal places)	

	 a) 0o		 b) 90o		 c) 30o		 d) 70o

write down the x-coordinate of the lines of 1 unit which have been rotated by
the angles given above.

Hands On AGK BASIC: String and Math Functions� 253

AGK BASIC performs this calculation using the Cos() function which has the format
shown in FIG-9.27.

where:

	 angle		 is a real number specifying the angle (in degrees) through which
			 the line has been rotated. This is measured in a clockwise
			 direction starting from the positive x-axis.

The real value returned by the function gives the x-coordinate of one end of the
rotated line (the other end being at the origin).

The angle through which the line has been rotated may also be measured in a counter-
clockwise direction, but is then specified as a negative value. This means that the
expressions Cos(304)and Cos(-56)both return the same value (see FIG-9.28).

 Sin()

To determine the y-coordinate of our one unit line, we use the Sin() function which
has the format shown in FIG-9.29.

where:

	 angle		 is a real number specifying the angle (in degrees) through which
			 the line has been rotated. This is measured in a clockwise
			 direction starting from the positive x-axis.

The real value returned by the function gives the y-coordinate of one end of the
rotated line (the other end being at the origin).

FIG-9.27

Cos()

Cos (angle)real

FIG-9.28

Clockwise and Counter-
Clockwise Angles

-y

+y

+x-x

304o

-56o

FIG-9.29

Sin() Sin (angle)real

Activity 9.17

Using Calculator, write down the y-coordinates of the four lines shown in
Activity 9.16.

254� Hands On AGK BASIC: String and Math Functions

Dealing with Longer Lines

It’s all very well to calculate the end point of a line which is one unit in length, but
what about lines that are 2, 4 or 7.5 units long?

Actually, the calculation required is quite simple: if the line is twice as long, the
coordinates of its end point are twice the value of those for a one unit line. If the line
is four times longer, then the coordinate values are four times as large.

All of this can be simplified to:

	 x-coordinate = length of line * cos(θ)
	 y-coordinate = length of line * sin(θ)

Offset Lines

If a line whose fixed end is not positioned at the origin is rotated, calculating the
coordinates of the moving end is done by calculating the x and y coordinates as
before but then adding the x and y offset values to the results (see FIG-9.30).

Using Cos() and Sin()

School may teach you the sine and cosine functions for no obvious practical reason,
but when it comes to games programming, these are important operations. Using the
Sin() and Cos() functions allows us to perform many operations on the screen
graphics. For example, to rotate a sprite about a point on the screen. The program
code in FIG-9.31 demonstrates how this is done by rotating a spot-shaped image

Activity 9.18

If a line is drawn from the origin and is 3.7 units in length, what are the
coordinates of its end point after it has been rotated to an angle of 191.5o ?

FIG-9.30

Offset Lines

9

8

60o
5

(9,8)

((5cos(60)+9),(5sin(60)+8))

x-axis

y-axis

+x

+y
Length
of line

x-o�setangle

Activity 9.19

Calculate the actual coordinates of the rotating end of the line shown in FIG-
9.29.

Hands On AGK BASIC: String and Math Functions� 255

about the centre of the screen.

Tan()

The last of the traditional trigonometric functions is tangent or tan. Tangent measures
the gradient (or steepness) of a line. Gradient of a line with one end fixed at the origin
is just the y-coordinate of the other end of the line divided by the x-coordinate (see
FIG-9.32).

So a line parallel to the x-axis has a gradient of zero, a line at 45o to the x-axis has a
gradient of 1 and a line at 90o has an infinite gradient. The Tan() function takes the
angle of the line and returns its gradient.

FIG-9.31

Rotating a Sprite

Activity 9.20

Start a new project called Rotation.

Compile the default code in order to create the media subfolder.

From the files you download with this book, copy the file Spot.png from the
AGKDownloads/Chapter9 folder into this project’s media folder.

Change main.agc to match the code shown in FIG-9.31.

Test and save your project.

rem *** Load image ***
LoadImage(1,”Spot.png”)
rem *** Create sprite ***
CreateSprite(1,1)
rem *** Size sprite ***
SetSpriteSize(1,5,-1)
rem *** Position sprite offset from screen centre ***
SetSpritePosition(1,70,50)
angle = 0
do
 angle = (angle+1) mod 360
 SetSpritePosition(1,20*cos(angle)+50,20*sin(angle)+50)
 Sync()
loop

FIG-9.32

Gradients

x-axis

y-axis

+x

+y

5

11

line A

The gradient of
line A is
 5/11
= 0.45

256� Hands On AGK BASIC: String and Math Functions

AGK’s Tan() function has the format shown in FIG-9.33.

where:

	 angle		 is a real number specifying the angle (in degrees) through which
			 the line has been rotated. This is measured in a clockwise
			 direction starting from the positive x-axis.

Degrees and Radians

No one knows with certainty why a full circular rotation is divided into 360 units
known as degrees (or degrees of arc, to give them their full title). One theory is that
ancient Persian civilizations used a calendar of 360 days (indicating a full rotation of
the Earth about the Sun).

An alternative unit of measurement is the radian. FIG-9.34 explains how this
measurement is derived.

AGK BASIC has a set of functions equivalent to Cos(), Sin() and Tan() called
CosRad(), SinRad() and TanRad() which take an angle given in radians rather than
degrees. The syntax for all three of these functions is shown in FIG-9.35.

FIG-9.33

Tan()

Tan (angle)real

FIG-9.34

Radians

The distance from the centre of a circle
to any point on its circumfrence is
known as the radius of the circle.

If we measure round the circumference
a distance exactly equal to the radius...

...and join the two ends of this back to
the centre of the circle...

...then we have created an angle which
is exactly one radian.

radius

One
radius in
length

An angle
of 1 radian

FIG-9.35

CosRad()
SinRad()
TanRad()

Hands On AGK BASIC: String and Math Functions� 257

where:

	 angle		 is a real number specifying the angle (in radians) through which
			 the line has been rotated.

ACos(), ASin() and ATan()

If you already know the x or y coordinates of the end point of a line or the gradient
of a line, but want to know the angle, then we can make use of the ACos(), ASin()
or ATan() functions respectively. For example, looking back at FIG-9.31 we can see
the gradient of the line is 5/11 but we don’t know the angle the line makes to the
x-axis. We can find out using the line

	angle = ATan(5/11)

In Activity 9.16 we discovered the coordinates of point A (which was rotated by 50o)
to be (0.643,0.766). Using the x-coordinate only, the line

	angle = ACos(0.643)

will give a result of (approximately) 50. And using the y-coordinate only

	angle ASin(0.766)

will also give the same result.

The syntax of the three statements are given in FIG-9.36.

where:

	 value		 is a real number.

The value returned represents an angle given in degrees.

ACosRad(), ASinRad(), ATanRad()

If you need the angles to be returned in radians rather than degrees, you can make use
of the ACosRad(), ASinRad() and ATanRad() functions which are shown in FIG-9.37.

TanRad (angle)real

SinRad (angle)real

CosRad (angle)real

The mathematical
names for these
functions arccosine,
arcsine and
arctangent.

FIG-9.36

ACos()
ASin()
ATan()

(value)

(value)

ACos (value)real

ASinreal

ATanreal

FIG-9.37

ACosRad()
ASinRad()
ATanRad()

ATanRad (value)real

ASinRad (value)real

ACosRad (value)real

AGK’s Tan() function has the format shown in FIG-9.33.

where:

	 angle		 is a real number specifying the angle (in degrees) through which
			 the line has been rotated. This is measured in a clockwise
			 direction starting from the positive x-axis.

Degrees and Radians

No one knows with certainty why a full circular rotation is divided into 360 units
known as degrees (or degrees of arc, to give them their full title). One theory is that
ancient Persian civilizations used a calendar of 360 days (indicating a full rotation of
the Earth about the Sun).

An alternative unit of measurement is the radian. FIG-9.34 explains how this
measurement is derived.

AGK BASIC has a set of functions equivalent to Cos(), Sin() and Tan() called
CosRad(), SinRad() and TanRad() which take an angle given in radians rather than
degrees. The syntax for all three of these functions is shown in FIG-9.35.

FIG-9.33

Tan()

Tan (angle)real

FIG-9.34

Radians

The distance from the centre of a circle
to any point on its circumfrence is
known as the radius of the circle.

If we measure round the circumference
a distance exactly equal to the radius...

...and join the two ends of this back to
the centre of the circle...

...then we have created an angle which
is exactly one radian.

radius

One
radius in
length

An angle
of 1 radian

FIG-9.35

CosRad()
SinRad()
TanRad()

258� Hands On AGK BASIC: String and Math Functions

where:

	 value		 is a real number.

The value returned represents an angle given in radians.

ATanFull() and ATanFullRad()

The main problem with ATan() is that it cannot guarantee that the angle returned is
the the correct one. Every gradient can be reproduced at exactly two angles. For
example, a line at 30o and one at 210o have the same gradient (See FIG-9.38).

The only way to differentiate between the two lines is to specify the end points of the
line rather than the gradient value. This is the option offered by the ATanFull() and
ATanFullRad()functions. The first returns the angle of the line in degrees, the second,
in radians. The functions have the format shown in FIG-9.39.

where:

	 xcoord	 is a real number giving the x-coordinate of the line whose angle
			 is to be found.

	 ycoord	 is a real number giving the y-coordinate of the line whose angle
			 is to be found.

The angle returned is the angle that the specified line (whose second end is assumed
to be at the origin), makes with the line from the origin to (0,1) - that is a line along
the negative y-axis. Note that this is exactly 90o more than how all other angles are
determined.

FIG-9.38

Angles and Gradients

-y

+y

+x-x
1

1

-1

-1

30o210o

Both lines
have the same

gradient

FIG-9.39

AtanFull()
ATanFullRad() ATanFullRad (x-coord)real

ATanFull (real

y-coord,
x-coord)y-coord,

Hands On AGK BASIC: String and Math Functions� 259

Other Math Functions
Sqrt()

If we started by knowing the end points of a line, could we work out the length of
that line? Well, if we take a second look at what’s going on when we calculate the
value of a sine or cosine (see FIG-9.40), we can see how this calculation can be done.

From the diagram, we can see that the end point coordinates actually represent the
lengths of two sides of a right-angled triangle, so the length of the third side (the line
we’ve drawn and the hypotenuse of the triangle) is given as:

Calculating the square of a value can be done with a line such as

	xcoord * xcoord

or

	xcoord^2

To calculate the square root, we might use

	length = (xcoord^2 + ycoord^2)^ 0.5

However, AGK BASIC provides a Sqrt() function which performs the same
operation as ^0.5. The statement’s format is shown in FIG-9.41.

where:

	 value		 is the real value whose square root is to be found.	This cannot
			 be a negative value.

So, the length of our line could be calculated as

	length = Sqrt(xcoord^2 + ycoord^2)

Abs()

There are occasions when we want the value of a number without worrying about
whether this is a positive or negative number.

In Chapter 4 we displayed the difference between a randomly generated number in
the range 1 to 6 and the player’s guess at what that number might be. This difference
was calculated as:

FIG-9.40

End Points and Line
Length

-y

+x-x

?

?

(1.72, 1.01)

1.72

1.01

length of line = xcoord + ycoord2 2

FIG-9.41

Sqrt()

Sqrt (value)real

260� Hands On AGK BASIC: String and Math Functions

	diff = dice - guess

However, sometimes that difference would be a negative value when the guess was
larger than the dice value. By using the Abs() function, which always returns the
positive form of the argument, this problem can be eliminated:

	diff = Abs(dice-guess)

The format for the Abs() statement is given in FIG-9.42.

where:

	 value		 is a real value.

The absolute value of value will be returned by the statement.

Ceil()

Returns the next integer value greater than or equal to the argument. Hence,

	Ceil(12.1)

returns 13 while

	Ceil(15.0)

returns 15.

But remember, when using a negative argument as in

	Ceil(-14.9)

the function returns -14 (which is greater than -14.9) and not -15 (which is less than
-14.9).

The Ceil() function has the format shown in FIG-9.43.

where:

	 value 		 is the real number whose value is raised to determine the return
			 value.

Floor()

Complementing the Ceil() function is the Floor() function which returns the largest
integer smaller than or equal to the function’s parameter. This means that

	Floor(12.1)

returns 12

	Floor(15.0)

FIG-9.42

Abs()

Abs (value)real

FIG-9.43

Ceil()

Ceil (value)integer

Hands On AGK BASIC: String and Math Functions� 261

returns 15, and

	Floor(-14.9)

returns -15.

The Floor() function has the format shown in FIG-9.44.

where:

	 value 		 is the real number whose value is lowered to determine the return
			 value.

Trunc()

Trunc()is perhaps the simplest of the numeric functions since it returns the integral
part of the real number argument, eliminating the fraction. So

	Trunc(12.9)

returns 12 and

	Trunc(-15.1)

returns -15.

The format for this statement is given in FIG-9.45.

where:

	 value 		 is the real number whose value is to be truncated.

Round()

Whereas the Trunc() function returns an integer by deleting the fraction part of the
parameter, Round() returns an integer by rounding the parameter to the nearest
integer. Hence,

	Round(15.1)

returns 15 and

	Round(15.6)

returns 16.

Rounding up happens for fractions of over 0.5 for positive value (.0 to 0.5 rounds
down).

Where the absolute value of a negative number’s fraction is over 0.5, the value is
rounded down:

	 Round(-64.6) 	 returns -65

FIG-9.44

Floor() Floor (value)integer

FIG-9.45

Trunc()

Trunc (value)integer

262� Hands On AGK BASIC: String and Math Functions

The format for Round() is given in FIG-9.46.

where:

	 value		 is a real number whose value is to be rounded to the nearest
			 integer.

Fmod()

Whereas the mod operator returns the integer remainder when two integer values are
divided, the Fmod() function returns the complete remainder (integral and fraction)
when two real numbers are divided. Hence,

	Fmod(7.0, 5.0)

returns 2.0 since 5.0 divides into 7.0 once with a remainder of 2.

	Fmod(16.9, 5.1)

returns 1.6 since 5.1 divides into 16.9 3 times with a remainder of 1.6.

The syntax for the Fmod() function is shown in FIG-9.47.

where:

	 num		 is a real value giving the numerator of the operation.

	 dem		 is a real value giving the denominator.

Summary
±	Cartesian coordinates use a horizontal x-axis and vertical y-axis to measure

positions in a 2D space.

±	These axes meet in the middle of that space at a point called the origin.

±	All distances in the x and y directions are measured from the origin.

±	By convention, points to the right of the origin on the x-axis are assigned
positive values; points to the left, negative values.

±	Points above the origin on the y-axis are assigned positive values; points below
the origin, negative values.

±	The axes divide 2D space into four quadrants.

FIG-9.46

Round() Round (value)integer

FIG-9.47

Fmod() Fmod (num)real dem

Activity 9.21

Give the value returned by each of the following function calls:

a) Sqrt(64)		 b) Abs(-9)		 c) Ceil(-9.1)
d) Floor(14.0)	 e) Trunc(12.95)	 f) Round(-16.9)
g) Fmod(-12.6,3.2)

Hands On AGK BASIC: String and Math Functions� 263

±	Any point in 2D space can be uniquely defined by specifying its position
perpendicular to the x and y axes.

±	A point’s position in 2D space is known as the coordinates of the point and are
given in the form

		 (distance along the x-axis, distance along the y-axis)

 	 normally this description is shortened to

		 (x,y)

±	On a computer, the positive section of the y-axis points down.

±	A computer screen represents only part of quadrant 1 in 2D space.

±	The Cos() function returns the cosine of a specific angle given in degrees.

±The Sin() function returns the sine of a specific angle given in degrees.

±	The Cos() and Sin() values for the same angle give the end coordinates of a
line one unit in length whose other end is at the origin.

±	For a line a units in length coming from the origin and at an angle of θo to the
x-axis, the end coordinates are (a*cos(θ),a*sin(θ)).

±	For a line of length a whose start point is at position (m,n) and lies at θo to the
x-axis, the other end’s coordinates are given as (a*cos(θ)+m, a*sin(θ)+n).

±	The Tan() function returns the tangent of a specified angle given in degrees.

±	Radians are an alternative way of measuring angles.

±	One radian is the angle created when two radii of a circle are drawn in such
a way that the distance along the arc of the circle’s circumference from one
radius to the other is exactly equal to the radius.

±	The CosRad()function returns the cosine of a specific angle given in radians.

±	The SinRad()function returns the sine of a specific angle given in radians.

±	The TanRad()function returns the tangent of a specified angle given in radians.

±	The Acos() function returns the angle of a line drawn from the origin with
a specified end x-coordinate. The angle is given in degrees in the range 0o to
180o.

±	The Asin() function returns the angle of a line drawn from the origin with a
specified end y-coordinate. The angle is given in degrees in the range -90o to
+90o.

±	The Atan() function returns the angle of a line with a specified gradient. The
angle will lie in the range -90o to +90o.

±	The AcosRad() function returns the angle of a line drawn from the origin with
a specified end x-coordinate. The angle is given in radians (0 to 2π)

±	The AsinRad() function returns the angle of a line drawn from the origin with
a specified end y-coordinate. The angle is given in radians (-π to π).

±	The AtanRad() function returns the angle of a line with a specified gradient.
The angle is given in radians (-π to π).

264� Hands On AGK BASIC: String and Math Functions

± The ATanFull() function returns the angle of a line (with specified end points)
to the negative part of the y-axis. The result is in degrees (0o to 360o).

±	The ATanFullRad() function returns the angle of a line (with specified end
points) to the negative part of the y-axis. The result is in radians (0 to 2π).

±	The Sqrt() function returns the square root of the function argument.

±	The Abs() function returns the absolute value of the function argument.

±	The Trunc() function returns an integer value calculated as the truncated value
of the parameter.

±	The Round() function returns an integer value calculated as the rounded value
of the parameter.

±	The Fmod() function returns the remainder produced by the division of two
real values.

Hands On AGK BASIC: String and Math Functions� 265

Solutions
Activity 9.1

The program should display the random string that was
generated and its length.

Activity 9.2
b$ would be set to 1-BY-1.

Activity 9.3
The original version of Letters:

#include “StringLibrary.agc”

text$ = RandomString(-1)
Print(“Original string is: “+text$)
for c = 1 to Len(text$)
	 Print(Mid(text$,c,1))
next c
Sync()
do
loop

This will begin by displaying the original string, then each
letter of that string on separate lines.

To display the letters in reverse order, the for loop needs to
decrement from Len(text$) down to 1. So the new code is:

#include “StringLibrary.agc”

text$ = RandomString(-1)
for c = Len(text$) to 1 step -1
	 Print(Mid(text$,c,1))
next c
Sync()
do
loop

The final version counts the number of E’s in the string:
#include “StringLibrary.agc”

text$ = RandomString(-1)
count = 0
for c = Len(text$) to 1 step -1
 if Mid(text$,c,1) = “E”
 inc count
 endif
next c
Print(“Original string is: “+text$)
PrintC(“It contains “)
PrintC(count)
Print(“ E’s”)
Sync()
do
loop

Activity 9.4
The code for ASCIITable:
for c = 32 to 126
	 	 rem *** Display number ***
 	 PrintC(c)
 	PrintC(“ is the ASCII code for “)
	 rem *** Display character ***
 	Print(Chr(c))
		 rem *** If 25th update screen and wait 5 secs
		 ***
 	if (c-31) mod 25 = 0
 Sync()
 Sleep(5000)
 	endif
next c
Sync()
do
loop

Activity 9.5
Code for CountZero:

rem *** Generate random number ***
num = Random(1000,65000)
rem *** Convert to a string ***
num$= str(num)
rem *** Start count at zero ***
count = 0
rem *** Check each character ***
for c = 1 to Len(num$)
 rem *** If it’s a 0, increment count ***
 if Mid(num$,c,1) = “0”
 inc count
 endif
next c
rem *** Display details ***
Print(“Original number “+num$)
Print(“Contains “+str(count)+” zeros”)
Sync()
do
loop

Activity 9.6
Create a new project called Conversions.
Compile the default code.
Copy the file Buttons.png and Buttons subimages.txt to the
media folder (you’ll find a copy in TestButtons).
Copy Buttons.agc into the the Conversions folder.

In the setup.agc file, change height to 1024 and width to 768.

Code main.agc as:

#include “Buttons.agc”

SetUpButtons()
rem *** Get value from buttons ***
num = GetButtonEntry()
rem *** Display number in dec, binary and hex ***
Print(“Number (base 10 : “+Str(num))
Print(“Number (base 2) : “+Bin(num))
Print(“Number (base 16) : “+Hex(num))
Sync()
do
loop

Activity 9.7
No solution required.

Activity 9.8
Create a new project called FunctionTester.
Copy StringLibrary.agc into the FunctionTester folder.

The code for FunctionTester is:
rem *** Test Pos Function ***
#include “StringLibrary.agc”
text$ = RandomString(30)
post = Pos(text$,”D”)
Print(“String is “+text$)
Print(“D at position “+Str(post))
Sync()
do
loop

rem *** Find Position of character in string ***
function Pos(s$, f$)
	 rem *** result stays at 0 if no match found ***
	 result = 0
	 rem *** Make sure we’re looking for a single
	 character ***
	 first$ = Mid(f$,0,1)
	 rem *** FOR each character in s$ DO ***
	 for c = 1 to Len(s$)
		 rem *** IF that character matches what we’re
		 after THEN ***
	 	 if Mid(s$,c,1) = first$
			 rem *** Set result to this position and exit
			 loop ***

266� Hands On AGK BASIC: String and Math Functions

			 result = c
			 exit
		 endif
	 next c
endfunction result

Changing the character searched for to a lowercase letter
will guarantee that the letter is not found. The program will
display zero for the position found. A better option would be
to check for zero being returned with code such as:

#include “StringLibrary.agc”
text$ = RandomString(30)
post = Pos(text$,”D”)
if post <> 0
 Print(“String is “+text$)
 Print(“D at position “+Str(post))
else
 Print(“D not found in text”)
endif
Sync()
do
loop

Activity 9.9
In the Projects Panel, right-click the project name and select
Add files from the pop-up menu.
Select StringLibray.agc from the listed files. That file will
then be listed in the Sources part of the project.
Double-click on the StringLibrary.agc file in the Projects
Panel. This will open a tab for the file’s source code in the
edit area.
Copy the code for function Pos() from main.agc and paste it
into StringLibrary.agc after the existing function.

Select Files|Save everything

Activity 9.10
Updated code for FunctionTester:

rem *** Test Pos Function ***
#include “StringLibrary.agc”

text$ = RandomString(30)
count = Occurs(text$,”S”)
Print(“String is “+text$)
Print(“S occurs “+Str(count)+” times”)
Sync()
do
loop

rem *** Return how often f$ occurs in s$ ***
function Occurs(s$,f$)
	 rem *** None found so far ***
	 result = 0
	 rem *** Make sure only one character ***
	 first$ = Mid(f$,0,1)
	 rem *** FOR each character in s$ Do ***
 	 for c = 1 to Len(s$)
		 rem *** if it matches req’d character, add 1 to
		 result ***
	 	 if Mid(s$,c,1) = first$
			 result = result + 1
		 endif
 next c
endfunction result

rem *** Find Position of character in string ***
function Pos(s$, f$)
	 rem *** result stays at 0 if no match found ***
	 result = 0
	 rem *** Make sure we’re looking for a single
character ***
	 first$ = Mid(f$,1,1)
	 rem *** FOR each character in s$ DO ***
	 for c = 1 to Len(s$)
		 rem *** IF that character matches what we’re
after THEN ***
	 	 if Mid(s$,c,1) = first$

			 rem *** Set result to this position and exit
loop ***
			 result = c
			 exit
		 endif
	 next c
endfunction result

rem *** Return how often f$ occurs in s$ ***
function Occurs(s$,f$)
	 rem *** None found so far ***
	 result = 0
	 rem *** Make sure only one character ***
	 first$ = Mid(f$,0,1)
	 rem *** FOR each character in s$ Do ***
 	 for c = 1 to Len(s$)
		 rem *** if it matches req’d character, add 1 to
		 result ***
	 	 if Mid(s$,c,1) = first$
			 result = result + 1
		 endif
 next c
endfunction result

The code for Occurs() should be copied from main.agc and
pasted into StringLibrary.agc.

Activity 9.11
Code for FunctionTester (previous functions are not shown):

text$ = “ABCDEFGHI”
text$ = Insert(text$,”XX”,2)
Print(“String is “+text$)
Sync()
do
loop

rem *** Inserts f$ at position p in s$ ***
function Insert(s$,f$,p)
	 rem *** If invalid position, result is original
	 string ***
	 if p < 1 or p > Len(s$)+1
		 result$ = s$
	 else
		 rem *** split s$ into two parts & insert f$
		 in between ***
		 result$ = Left(s$,p-l)
		 result$ = result$ + f$
		 result$ = result$+ Right(s$,Len(s$)-(p-1))
	 endif
endfunction result$

Changing the line
text$ = Insert(text$,”XX”,2)

to
text$ = Insert(text$,”XX”,12)

will return the original text since the insert position given is
invalid.

Copy and paste the code for the routine into StringLibrary.
agc.

Activity 9.12
Code for FunctionTester (previous functions are not shown):

text$ = “ABCDEFGHI”
text$ = Delete(text$,3,5)
Print(“String is “+text$)
Sync()
do
loop

rem *** Delete num characters from s$ starting at
position st ***
function Delete(s$, st, num)
	 rem *** if invalid position, result is original
	 string ***
	 if st < 1 or st > Len(s$)
		 result$ = s$
	 else

Hands On AGK BASIC: String and Math Functions� 267

 rem *** Set result to the part of s$ to the
		 left of ***
 rem *** the section to be deleted ***		
		 result$ = Left(s$, st-1)
		 rem *** IF not deleting to the end of s$, ***	
		 rem *** add right section ***
 if st+num-1 <= Len(s$)
 result$ = result$+Right(s$,Len(s$)-
					 (st+num-1))
 endif
	 endif
endfunction result$

Changing
	 text$ = Delete(text$,3,5)	

to
	 text$ = Delete(text$,13,5)

will return the original string since the delete position is
invalid.

When the number of characters to be deleted is greater than
the number available, all characters after the start position are
deleted. Hence,

	 text$ = Delete(text$,3,15)

returns
	 AB

Copy the functions code and paste it into StringLibrary.agc.

Activity 9.13

Code for FunctionTester (previous functions are not shown):
text$ = “ABCDEFGHI”
text$ = Replace(text$,”X”,3)
Print(“String is “+text$)
Sync()
do
loop

rem *** Replace the pth character in s$ with rs$ ***
function Replace(s$, rs$, p)
 rem *** If invalid position ***
 rem *** return original string ***
 if p < 1 or p > Len(s$)
 exitfunction s$
 endif
 rem *** If rs$ more than one character use left-
		 most character ***
 rs$ = Left(rs$,1)
 rem *** Calculate result ***
 result$ = Left(s$,p-1)+rs$+Right(s$,Len(s$)-p)
endfunction result$

A line such as
text$ = Replace(text$,”X”,13)

will return the original string since the position specified is
invalid.

Copy and paste the code into StringLibrary.agc.

Activity 9.14
At 0o the x-coord is 1
At 90o the x-coord is 0

Activity 9.15
	 cos(0)	 = x-coord	 =	 1
	 cos(90)	 = x-coord	 =	 0
	 cos(30)	 = x-coord	 =	 0.866
	 cos(70)	 = x-coord	 =	 0.342

Activity 9.16
	 cos(50)	 = x-coord	 =	 0.643
	 cos(168) = x-coord	 =	 -0.978
	 cos(213)	 = x-coord	 =	 -0.839
	 cos(304) = x-coord	 =	 0.559

Activity 9.17
	 sin(50)	 = y-coord	 =	 0.766
	 sin(168)	= y-coord	 =	 0.208
	 sin(213)	= y-coord	 =	 -0.545
	 sin(304) = y-coord	 =	 -0.829

Activity 9.18
x coord = 3.7cos(191.5) = -3.626
y coord = 3.7sin(191.5) = -0.738

Activity 9.19
x coord = 5cos(60)+9 = 11.5
y coord = 5sin(60)+8= 12.330

Activity 9.20
No solution required.

Activity 9.21
a) 8		 b) 9		 c) -9
d) 14		 e) 12		 f) -17
g) -3.0

FUNCTION NAME	 :	 Replace
PARAMETERS
	 In				 :	 s		 : string
						 sr		 : character
						 p		 : integer
	 Out				 :	 result	 : string
PRE-CONDITION	 :	 1 <= p <= Len(s)
DESCRIPTION		 :	 result is equal to s except that
						 the pth character of result is
						 sr.

268� Hands On AGK BASIC: String and Math Functions

Hands On AGK BASIC: Arrays� 269

In this Chapter:

T The Limitations of Standard Variables

T	The Concept of Arrays

T	Declaring Arrays

T Initialising Arrays

T	Accessing Array Elements

T	Array Subscripting

T	Arrays and Counting

T	Arrays and Non-Repeating Values

T	Arrays and Shuffling

T	Arrays and Sorting

T	Arrays and Searching

T Multi-dimensional Arrays

T Arrays as Function Parameters

Arrays

270� Hands On AGK BASIC: Arrays

Arrays

Problems with Simple Variables
There are certain tasks which are very difficult or long-winded when we try to do
them using the normal variables we’ve been dealing with up to now. For example,
it’s common for a video game to retain the top five scores but, from what we know
at the moment, we’d have to set up one variable for each score to be saved.

When a player finishes a game, the program then has to decide if the player’s score
should be recorded in the top five and, if so, at what position. If the new score is good
enough to be recorded as a highest score, then the list must be updated. The whole
process is shown in FIG-10.1.

Notice that what had been the third and fourth highest scores, have now moved down
one position and that the score of 1220 has been lost from the top five.

We need to develop an algorithm which can perform the above task for all possible
values which might be placed within the top five scores. One possible structured
English solution could use the lines:

	IF 		
		 newscore > score1:
			 score5 = score4
			 score4 = score3

FIG-10.1

Using Regular
Variables

If the top five game scores are held
in 5 separate variables...

...and a new player gains a score that
should be added to this list...

...then the program code needs to
find at which point the new score
should be added...

...and then adjust the list accordingly.

2250 2000 1890 1500 1220

score1 score2 score3 score4 score5

2250 2000 1930 1890 1500

score1 score2 score3 score4 score5

1930

newscore

2250 2000 1890 1500 1220

score1 score2 score3 score4 score5

1930

newscore

Insertion
point

New score
inserted

Hands On AGK BASIC: Arrays� 271

			 score3 = score2
			 score2 = score1
			 score1 = newscore
		 newscore > score2:
			 score5 = score4
			 score4 = score3
			 score3 = score2
			 score2 = newscore
		 newscore > score3:
			 score5 = score4
			 score4 = score3
			 score3 = newscore
		 newscore > score4:
			 score5 = score4
			 score4 = newscore
		 newscore > score5:
			 score5 = newscore
	ENDIF

The algorithm is a bit long-winded, but just about acceptable. Now imagine that we
had the top ten scores to retain. What would the algorithm look like then? It’s going
to be long - very long. Luckily, there is a better way to achieve what we’re after -
arrays.

One Dimensional Arrays
Array Concepts

An array is a named data variable capable of storing several values at the same time.
It is a collection of elements or cells. Each of these elements holds a single value -
just like the regular variables we have used in our previous programs.

Each cell within an array is numbered. The first cell is numbered cell zero, the next
cell 1, etc. Exactly how many cells an array contains is determined when the array is
first set up.

FIG-10.2 shows how we might visualise a 6 element array called scores.

The individual cells within the array are identified by a combination of the array
name and the cell’s number which is known as the subscript. The subscript is
enclosed within square brackets. For example, the second cell within the array shown

Activity 10.1

Assuming the following values 	

score1 = 2250 score2 = 2000 score3 = 1890	 score4 = 1500
score5 = 1220	

newscore = 1900

work your way through the algorithm given above to check that the expected
result is obtained.

FIG-10.2

Visualising Arrays 1 2

scores

430 5

272� Hands On AGK BASIC: Arrays

above is identified using the term

	scores[1]

Declaring an Array

Whereas we are free to introduce a standard variable at any point in a program, we
need to tell the compiler in advance that we intend to use an array. This is known as
an array declaration. An array declaration begins with the keyword dim followed
by the name we wish to assign to the array. The only additional piece of information
required is the subscript for the final element of the array - this determines how many
elements the array is to contain. So, to set up the scores array as shown in FIG-10.2,
we would use the declaration

	dim scores[5]

This creates a 6 cell array with the cells numbered 0 to 5.

Arrays can be declared to hold values of any of the types we can use for regular
variables: integer, real or string. For example,

	dim averages#[10]	rem *** 11 element real array ***
	dim names$[19] 	 rem *** 20 element string array ***

Every cell within the array can then hold a single value of the specified type. It is not
possible to create an array with cells of differing types.

Initialising Arrays

When an array is first set up, every cell in the array contains the value zero (or an
empty string when using string arrays). But it is possible to specify a different starting
value for each cell when declaring the array by extending the array declaration. For
example, the line

	dim numbers[3] = [12, 0, -6, 8]

will create the array setup shown in FIG-10.3.

If there are too many values specified within the braces, the surplus values are
ignored; if there are too few values supplied, then the cells which have not specifically
been assigned a value are set to zero.

Accessing Array Elements

We cannot perform operations on an array as if it were a single entity. For example,
it would be invalid to try to display all the values held in an array with a statement
such as

	Print(numbers)

Instead, we must deal with the individual elements within the array. So, to display the
value in the first element in the array numbers, we would write

FIG-10.3

Array Initialisation 1 2

numbers

30
12 0 -6 8

Hands On AGK BASIC: Arrays� 273

	Print(numbers[0])

To assign a value to the next element we could use a statement such as

	numbers[1] = 4

and we could check if the last element contained a value of less than zero with the
line

	if (numbers[3] < 0)

In fact, we can use an array element in any statement where we might use a simple
variable of the same type. Some more examples are shown in FIG-10.4.

You must ensure that the subscript you supply is a valid one; the compiler will not
check that the subscript value is within a range compatible with the size of the array
created. Hence, code such as

	dim list[6]
	list[7]= 21;	 rem *** Subscript too high ***

will be compiled but when the program is running it will halt when the assignment
statement is reached and display a message of the form

Subscript out of bounds at line 2

FIG-10.4

Accessing Array
Elements

The array, list, is set up with a
declaraction statement. Since no
initilal values are specified, the
content of each cell is zero.

We can assign a value to an array
element by specifying the array name
and, enclosed in brackets, the
element’s subscript.

The contents of one or more cells
can be used to determine the value
given to another cell.

To display the contents of an array
element we use the usual Print()
statement.

list
0 1 65432

0 000 00 0

dim list[6]

The
statement creates

a 7 cell array

list
0 1 65432

0 0016 00 2

list[3] = 16
list[1] = 2

list
0 1 65432

0 18016 00 2

list[5] = list[1] + list[3]

list
0 1 65432

0 18016 00 2

Print(list[5])
Sync()

18

274� Hands On AGK BASIC: Arrays

What Makes Arrays Powerful

If what we’ve seen up to now was all that could be achieved by arrays, they would
be of little more use than simple variables. For example, if we were to simulate the
throwing of four dice using four integer variables, we could use the lines:

	dice1 = Random(1,6)
	dice2 = Random(1,6)
	dice3 = Random(1,6)
	dice4 = Random(1,6)

Using an array would require the lines:

	dim dice[4]
	dice[1] = Random(1,6)
	dice[2] = Random(1,6)
	dice[3] = Random(1,6)
	dice[4] = Random(1,6)

Both segments are equally long winded.

What adds power to the array is the fact that the subscript need not be given as a fixed
value. Instead, we are free to use a variable. The value of that variable then determines
the value of the subscript and hence which element within the array is to be accessed
(see FIG-10.5).

ËË dice[0] is unused.

FIG-10.5

Variable Subscripts

We start by declaring our array and
also a simple variable.

We can then use that variable as the
subscript when accessing a cell within
the array

list
0 1 65432

0 000 00 0

dim list[6]
c = 2

c
2

list
0 1 65432

0 000 00 0

list[] = 12c

The value in the variable c then
determines which cell is to be
accessed.

c
2

interpreted as

value in c
used as
subscript

list[] = 12c

list[] = 122

So the final effect of executing the line
is to assign the value 12 to cell 2.

c

list
0 1 65432

000 00 0 12

2

list[c] = 12

Hands On AGK BASIC: Arrays� 275

If the contents of the variable c are changed, then it follows that the array element
being accessed will also change.

We need to take only one further step to realise how we can use arrays to create
shorter code for our earlier problem of reading in four values.

With the code

	for c = 0 to 6

the variable c will, as the loop repeats itself, take on first the value 0, then 1, 2, etc.
and finally 6.

So, returning to our dice code, if we use a variable it conjunction with array access,
we can assign our four values using the code

	dim dice[4]
	for c = 1 to 4
		 dice[c] = Random(1,6)
	next c

As c changes value each time the loop iterates, so the term dice[c] in the assignment
statement will reference a different element of the array dice.

Array Element Zero

Every array always has an element zero - as we have already seen. But there are times
when the clarity of an algorithm is better served by ignoring this element. For
example, we used elements dice[1] to dice[4] to store our dice throws, ignoring
dice[0]. If we want to store information based on the months of the year, we would
probably set up the appropriate array

	dim months[12]

and use months[1] to months[12] since this corresponds to the months of the year.

Of course, there is no reason why we could not use elements dice[0] to dice[3] and
months[0] to months[11] for our data, but doing that detracts slightly from how we
might normally think. And that means we are more likely to make mistakes in our
program logic and hence, in these cases, using element zero is probably best avoided.

The only downside of ignoring element zero is that we end up making our arrays one
element larger than they need to be. This seems like a small price to pay given the
memory available on modern devices.

Array Subscript Options

We’ve already seen that an array subscript can be given in the form of a constant as

Activity 10.2

Start a new project called Arrays01, and, using the code given above, create a
complete program which stores the values obtained by four dice throws in the
array dice (ignore element zero).

By adding a second for loop to your code, get the program to display the
contents of the array. Test and save your project.

276� Hands On AGK BASIC: Arrays

in dice[1] or as a variable (dice[c]), but it can also be given in the form of an
arithmetic expression. For example, in the code

	dim values[20]
	p = 3
	values[p*2] = 42

will store the value 42 in values[6] - which is the seventh cell within the array.

We can even use the contents of one cell as the subscript. So, in the code

	dim values[20]
	values[0] = 9
	values[values[0]] = 4

will result in the value 4 being stored in values[9].

Using Arrays
We’ve already seen a simple example of how we might make use of an array, but
arrays can be used in many more ways. Some examples of how arrays can be used to
help create an efficient solution to a problem are shown in this section.

Problem: Multiple Counts

One of the tests used to make sure that a dice is not bias is to check that, for a large
number of throws, each number should appear approximately the same number of
times.

Solution:

We can use an array to keep count of how often each number occurs. Cell 1 will hold
a count of how often the number 1 is thrown, cell 2 the number of times 2 is thrown,
etc (see FIG-10.6).

Activity 10.3

State the contents of each cell in the array numbers after the following code
has been executed.

dim numbers[8]
for p = 0 to 8
	 numbers[p] = p*2
next p
numbers[numbers[2]-1] = 23

A dice is said to be bias
if each number does not
have the same likelihood
of being thrown.

Since the diagram shows
only a small number of
throws, the distribution of
each number can vary more
widely.

FIG-10.6

Counts Concept

Dice
Throws

counts array 3 1 4 2 1 2

0 1 2 3 4 5 6

0

subscript

Hands On AGK BASIC: Arrays� 277

 The structured English for our solution could be written as

	 FOR 1000 times DO
		 Throw dice
		 Add 1 to appropriate count
	 ENDFOR
	 Display all 6 counts

The code for the program is given in FIG-10.7.

Problem: Generating Random Non-Repeating Values

Many countries run lottery systems. The simplest of these require you to choose 6
unique numbers in the range 1 to 49. Of course, we can easily get the computer to
generate and display six numbers in this range, but we also need to make sure that
none of the six numbers are the same.

Solution:

To ensure that there are no duplicate values from the second number onwards, we

Activity 10.4

Start a new project DiceCount.

Modify main.agc to match the code given in FIG-10.7. Test and save your
project.

Some games make use of a 10 sided dice. Modify your program so that it will
generate numbers in the range 1 to 10 and count how often each value occurs.

As you see, modifying the code for a 10-sided dice requires changes in several
lines. To avoid this we could set the number of sides as a named constant.

Modify your code to use a named constant called SIDES for the number of
sides on the dice.

Now change the code to deal with a 20 sided dice. How many lines of code
need to be modified to handle this?

FIG-10.7

Keeping Multiple
Counts

dim counts[6]
rem *** Throw the dice 1000 times ***
for c = 1 to 1000
	 rem *** Throw dice ***
	 dicethrow = Random(1,6)
	 rem *** Add to appropriate count ***
	 inc counts[dicethrow]
next c

rem *** Display each count ***
for c = 1 to 6
	 Print(Str(c)+“ occurred “+Str(counts[c])+“ times”)
next c
Sync()
do
loop

278� Hands On AGK BASIC: Arrays

need to check that the generated number has not already been selected. One way to
do this is to set up an array containing a cell for each number that might be generated.
Initially all the cells contain zero, but when a number is selected the corresponding
cell’s value is set to 1. When a number is generated, it can only be added to the list
of selected values if its corresponding cell contains a zero at that point (see FIG-
10.8).

 The structured English for our solution would be:

	 Set all cells to 0
	 Generate a random number in the range 1 to 49
	 Set the corresponding cell to 1
	 Display the value
	 FOR 5 times DO
		 REPEAT
			 Generate a random number
		 UNTIL the corresponding cell is zero
		 Set the corresponding cell to 1
		 Display the number
	 ENDFOR

FIG-10.8

Unrepeated Random
Values: Concept

0 1 2 3 4 5 44 45 46 47 48 49

numbers array

0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 44 45 46 47 48 49

0 0 0 0 0 0 0 1 0 0 0 0

0 1 2 3 4 5 44 45 46 47 48 49

0 0 0 0 0 0

0 1 2 3 4 5

0 0 0 0 1 0

0 1 0 0 0 0

44 45 46 47 48 49

0 1 0 0 0 0

The array contains an element
for each number that can be
generated (1 to 49). Initially,
every cell contains zero.

When a value is generated, the
corresponding cell is set to 1.

If 45 is generated,
numbers[45] is set
to 1.

Other generated values are
only accepted if the
corresponding cell in numbers
contains a zero.

If 4 is generated, it is
accepted because
numbers[4] contains
zero.

Once accepted, the matching
cell is set to 1.

numbers[4] set
to 1.

Hands On AGK BASIC: Arrays� 279

The program for this is shown in FIG-10.9.

Problem: Shuffling
Many applications require items to be re-arranged in a random order. For example,
your MP3 player probably offers a shuffle option which will play music tracks in a
random order and shuffling is mandatory for almost every card game.

Solution:

If we start by storing a set of values in an array (these may represent music track
numbers or playing card values), then we can create a shuffle effect by taking the
values at two randomly selected positions within the array and swapping them over
(see FIG-10.10).

FIG-10.9

Unrepeated Random
Values: Code

#constant HIGHEST = 49

dim lottery[HIGHEST]	

rem ***Generate number ***
number = Random(1,HIGHEST)

rem *** Set corresponding cell ***
lottery[number] = 1

rem *** Display value ***
Print(number)
rem *** FOR 5 times DO ***
for c = 1 to 5
	 rem *** Generate an unselected number ***
	 repeat
		 rem ***Generate number ***
		 number = Random(1,HIGHEST)
	 until lottery[number] = 0
	 rem *** Set corresponding cell ***
	 lottery[number] = 1
	 rem *** Display value ***
	 Print(number)
next c
Sync()
do
loop

Activity 10.5

Start a new project, Lottery. Modify main.agc to match the code in FIG-10.9
and test the program.

There is really no need to treat the first number any differently from the
remaining five. Modify the code so that all 6 numbers are generated within the
for loop.

The code displays the numbers as they are generated rather than in ascending
order. Modify the code so that the six numbers are displayed in ascending
order.

(HINT: You will need to remove the existing Print()statements from the
code.)

280� Hands On AGK BASIC: Arrays

If we continue to do this many more times, the items will have been effectively
shuffled.

The structured English is:

	 Set up all values within an array
	 FOR 200 times DO
	 	 Generate a first random subscript
		 Generate a second random subscript
		 Swap the values held at the subscript positions
	 ENDFOR

 The code for shuffling an array of 20 values is given in FIG-10.11.

FIG-10.11

Shuffling: Code

dim list[20]

rem *** Set up values in array ***
for c = 1 to 20
	 list[c] = c
next c
rem *** Shuffle ***
for c = 1 to 200
	 rem *** Generate two subscript values ***
	 sub1 = Random(1,20)
	 sub2 = Random(1,20)
	 rem *** Swap values at these positions ***
	 temp = list[sub1]
	 list[sub1] = list[sub2]
	 list[sub2] = temp
next c
rem *** Display shuffled items ***
for c = 1 to 20
	 PrintC(Str(list[c])+“ “)
next c
Sync()
do
loop

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 10 4 5 6 7 8 9 3 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

shu�e array
The array is set
up to contain the
values to be
shu�ed

Two positions
are chosen at
random...

Selected
position

Selected
position

...and the values
at those positions
exchanged.

Values exchanged

FIG-10.10

Shuffling: Concept

Hands On AGK BASIC: Arrays� 281

Problem: Handling an Array that is not Full

There are times when we will set up an array with space enough to hold a specific
number of values, but initially not all the cells will contain meaningful data. For
example, a game which remembers the top 5 scores, will contain no top scores when
first played. In these situations, we may want to access only the elements of the array
in which data has already been placed and so we need to know which cells contain
data.

Solution:

One way to handle this problem is to use element zero in the array to keep a count of
how many cells in the array contain data (see FIG-10.12).

 The main steps involved in this setup are shown in FIG-10.13.

FIG-10.12

A Data Count

Data
No

meaningful data

0 1 2 3 4 5 6

3 8 4 7 0 0 0

Cell 0 contains a
count of how many
cells contain data.

FIG-10.13

Using a Data Count

Initially, the array elements all contain
zero. This ensures that the count
held in element zero is correctly set.

To add a value to the list, we begin
by incrementing the count in element
zero.

dim list[6]

list
0 1 65432

0 000 00 0

inc list[0]

list
0 1 65432

0 000 01 0

count
incremented

Activity 10.6

Start a new project, Shuffle, and implement the code in FIG-10.11. After testing,
modify the program so that the contents of list are displayed before and after the
shuffle.

To simulate a card pack, we would need a 52 element list. The numbers 0 to 12
could represent ace to king of hearts; 13 to 25 diamonds; 26 to 38 spades; and
39 to 51 clubs. Modify the program to shuffle a deck of cards and display the
first six “cards” in the list.

It would be better if we could display the value and suit of a card rather than
just a number. For example, displaying 2 of diamonds rather than 14. Modify
your program to do this. For the moment, Ace, Jack, Queen and King can be
displayed as 1, 11, 12, and 13 of the appropriate suit. (HINT: Use the division
and modulo operators (/ and mod) to determine the suit and value of a card.

A final improvement would be to display the names Ace, Jack, Queen and King
as appropriate. Test and save your project.

282� Hands On AGK BASIC: Arrays

The only check that is required when adding a new value is that the array must not
already be full.

The logic required to insert a value into the list can be written in structured English
as:

	 Get value to be added
	 IF the list is not full THEN
		 Add 1 to the count in element zero
		 Insert the new value at the end of the existing data
	 ELSE
		 Display message “List is full”
	 ENDIF

A menu-driven program demonstrating how values are added to an array using the
technique described above is given in FIG-10.14. Note that the program allows four
options: add a value, display how many values are held, display the values held, and
quit. FIG-10.14

Implementing a Data
Count

Notice that the count in element zero
is also equal to the cell number where
the new value is to be added.

This allows the new value to be added
using list[0] as the subscript in the
assignment statement.

list
0 1 65432

0 000 01 0

New value
added here list[list[0]] = 23

list
0 1 65432

0 000 01 23

#include “Buttons.agc”

#constant SIZE 5
dim list[SIZE]

//*** Repeat until quit selected ***
SetUpButtons()
repeat
 //*** Display menu ***
 Print(“1 - Enter value”)
 Print(“2 - Display number of values held”)
 Print(“3 - Display all values held”)
 Print(“4 - QUIT”)
 //*** Get option ***
 Print(“Enter option required(1-4)”)
 Sync()
 Sleep(4000)
 option = GetButtonEntry()
 while (option < 1 or option > 4)
 Print(“Invalid option. Re-enter.”)
 Sync()
 Sleep(2000)
 option = GetButtonEntry()
 endwhile

FIG-10.13
(continued)

Using a Data Count

Hands On AGK BASIC: Arrays� 283

Keeping a count of the number of entries in an array is only one way of handling the
problem of keeping tabs on just how many elements within an array contain
meaningful data. A second approach is to use a “marker” value in the cell following
the last value held in the array. For example, we might follow the actual data by a
value of, say, -99 (see FIG-10.15).

 //*** Execute option ***
 select option
 	 case 1:	 //*** Add a new value to the list ***
 Print(“Enter value to be added : “)
 Sync()
 Sleep(2000)
 value = GetButtonEntry()
			 if list[0] < SIZE
 inc list[0]
				 list[list[0]] = value
			 else
				 Print(“List is full”)
			 endif
			 Sync()
			 Sleep(2000)
 endcase
 case 2:	 //*** Display the number of items in the list ***
 Print(“The list contains “+Str(list[0])+” entries”)
 Sync()
 Sleep(2000)
 endcase
 case 3:	 //*** Display the contents of the list ***
 if (list[0] = 0)
 Print(“The list is empty”)
 else
 Print(“Values held are”)
 for c = 1 to list[0]
 PrintC(Str(list[c])+” “)
 next c
 endif
 Sync()
 Sleep(2000)
 endcase
 case 4: //*** Quit program ***
 Print(“Quitting program in 2 seconds”)
 Sync()
 endcase
 endselect
until option = 4
Sleep(2000)
end

Activity 10.7

Start a new project called DataCount and implement the code given in FIG-
10.14.

Remember to copy the three files needed to use the Buttons functions.

Test and save your project.

FIG-10.14
(continued)

Implementing a Data
Count

284� Hands On AGK BASIC: Arrays

The marker value, often known as the sentinel, must be chosen with care. Obviously,
we cannot use a value which can occur within the actual data, since such an occurrence
would be assumed to be the terminating value. For example, we could safely choose
the value -1 as a terminating value if we were sure that all the actual data values were
positive.

The main characteristics of this approach are shown in FIG-10.16.

The complex part of this operation is locating the sentinel value within the array.
After several values have been added, there is no easy way of knowing the sentinel’s
position. To find its location, we must search through the contents of the array.

Searching a list of values for some specific entry is one of the commonest requirements
in a software application. There are many ways of searching a list. For the moment,

FIG-10.16

Using a Sentinel
Value

Initially, the sentinel value is placed in
the first element of the array.

Inserting a new value requires us to
first find the location of the sentinel
value...

list
0 1 65432

? ??? ?-99 ?

sentinel
value

list
0 1 65432

? ??? ?-99 ?

sentinel
located

...then insert the new value at that
point...

...and finally reinsert the sentinel value.

list
0 1 65432

? ??? ?26 ?

new
value added

list
0 1 65432

? ??? ?26 -99

sentinel
value added

list

Terminating
value

Data
No

meaningful data

0 1 2 3 4 5 6

8 4 7 -99 0 0 0

FIG-10.15

A Sentinel Value

Hands On AGK BASIC: Arrays� 285

we will content ourselves by examining only one of these.

If we are looking for the value -99 in a list of values, we can compare -99 with each
value in the list and stop when we find a match. This can be achieved by the code:

	post = 0
	while list[post] <> -99
		 inc post
	endwhile

Once the insert position has been found, we need to insert the new value and place
-99 to its new position. Assuming we are using the version of the while loop given
above, this would be achieved using the lines

	list[post] = value
	list[post+1] = -99;

We can determine if the list is empty using the expression

	if list[0] = -99

and if it is full using

	list[SIZE] = -99

To count the number of entries in the list, we are forced to search for the sentinel. Its
position in the list will be equal to the number of entries. For example, initially -99
is in cell 0 and there are zero entries in the list; when -99 is stored in cell 3 there will
be three entries in the list (occupying cells 0, 1 and 2).

Problem: Inserting a Value into an Array

In the previous problem, new values were inserted at the end of the existing data.
However, there are many circumstances when the new value will be required to be
positioned elsewhere within that data. As we will see, inserting a new value within
existing data causes new problems.

Solution:

When we want to add a value between existing values (just as we might add a
character into a misspelled word when using a word processor) then we need to
create space at the insertion point by moving other values out of the way.

FIG-10.17 shows the steps involved. for a count-based array.

Activity 10.8

Using the program you created in Activity 10.7 as a guide, create a new project
called SentinelData which makes use of a sentinel-based list.

The program should retain the same four options: allowing a value to be added
to the data, displaying the number of values already stored, displaying the
actual contents of the array, and a quit option.

Test and save your project.

286� Hands On AGK BASIC: Arrays

When a new item is being added we need to acquire not only its value, but also the
cell number into which it is to be placed. This can be done using the code:

If we start with an empty array, there
is only one position into which a new
value can be inserted: cell 1.

Once the first value has been added,
there are two possible positions where
the second item may be placed.

When the new value has to be placed
in front of existing values, those values
need to be moved to the right ...

... to make space for the
new value. The count in cell 0 is also
incremented.

list
0 1 65432

? ??? ?0 ?

This is
the only cell which

can be given a
value

list
0 1 65432

? ??? ?1 24

New
value can
go here

list
0 1 65432

24 ??? ?1

Value moved

list
0 1 65432

24 ??? ?2 9

New value

Count
incremented

Activity 10.9

Assuming an array is in the state shown in the diagram below

in which cells may a new value be positioned?

Assuming the value 77 is to be placed in cell 3, show, with the aid of diagrams,
the state of the array after:

	 a)	 Existing values have been moved to make space for the new
		 value.

	 b)	 The new value has been inserted.

list
0 1 65432

13 ?3324 ?4 9

FIG-10.17

Adding a Value to an
Array

The value 24 is actually
copied into list[2], so
list[1] is not empty
(as suggested by the
diagram), but still
contains the value 24.
This will be overwritten
when the new value is
inserted.

Hands On AGK BASIC: Arrays� 287

	Print(“Enter new value”)
	Sync()
	Sleep(1000)
	value = GetButtonEntry()
	Print(“Enter its position”)
	Sync()
	Sleep(1000)
	post = GetButtonEntry()
	while (post < 1 or post > list[0]+1)
		 Print(“Invalid position. Must be in the range 1 to “
		 +Str(list[post]+1))
		 Print(“Re-enter position”)
		 Sync()
		 Sleep(1500)
		 post = GetButtonEntry()
	endwhile

 Notice that the code includes a check to insure that the insert position is valid.

To free space for the new value, we need to move all those values between post and
list[0] up one position within the array. This is done using the following code:

	for current = list[0] to post step -1
		 new = current + 1
		 list[new] = list[current]	
	next current

As you can see, it is necessary to move the value at the end of the list first, otherwise
you would overwrite the next value (see FIG-10.18).

All that remains now is to add the new value and increment the count held in list[0]:

	list[post] = value
	inc list[0]

Problem: Recording the Top Scores

We started this chapter by looking at what was involved in maintaining a record of
the top five scores in a video game. We have now learnt enough about arrays and the
techniques employed when using them to tackle that earlier problem. But there are a

FIG-10.18

Moving Data

list
0 1 65432

13 ?3324 ?4 9

If the contents of cell 1 were
copied to cell 2, the original
contents of that cell (13) would
be lost.

Activity 10.10

Modify your DataCount project so that, when new data is entered, the program
requests an insert position for the data and places the new data at the specified
position.

Test and save your project.

288� Hands On AGK BASIC: Arrays

couple of new problems to handle:

±	When a top score is achieved, the point at which it is inserted in a list is
determined by the existing values in that list.

±	Once five scores have been recorded within the list, any new score that is
added will mean that the lowest score will be eliminated from the list.

Solution:

To insert a new top score, we need to search down the list to find the first entry with
a value which is less than the one we wish to add.

	post = 1
	while list[post] >= newscore
		 inc post
	endwhile

This will give us the insert position as long as the newscore is greater than at least
one of the existing top scores. However, there would be a problem if this was not the
case : the while loop would fail to terminate! We could try adding a second condition
to the loop so that it terminates if we arrive at the end of the array:

	post = 1
	while list[post] >= newscore and post <= SIZE
		 inc post

Unfortunately, this leaves us with another problem: when post is incremented for the
last time, it will be set to 6, then, as we loop back and test the first condition

	list[post] >= newscore

we will be trying to access scores[6] - a cell which does not exist.

One way to solve this problem is to make the array one cell larger than we need:

	dim list[SIZE++1]

which would mean that the array does contain a cell identified as scores[6] although
we will never make use of that cell (we only need the top 5 scores).

A second option is to re-organise the conditions within the while statement:

	while post <= SIZE and list[post] >= newscore

AGK BASIC implements short-circuit evaluation. When two conditions are
ANDed together and the first is evaluated to false, the second condition is not tested.
This means we won’t attempt to access a non-existent element of list.

Now we have a situation exactly as before with a value and a position at which it is
to be inserted. The only other change we need to make is to allow the lowest value in
scores[5] to be eliminated when the lower values are shifted to make space for the
new value. This can be done by making the first shift from cell 4 to cell 5 (the last
cell) thereby overwriting the value previously held in cell 5.

The code for this is:

	for current = 4 to post step -1
		 new = current + 1

Hands On AGK BASIC: Arrays� 289

		 list[new] = list[current]
next current

A more flexible solution would be to initialise current to SIZE rather than 4. This
would allow the number of high scores to be changed without having to alter any
code other than the definition of SIZE. This gives us the new line:

	for current = SIZE to post step -1

When we first begin to store the highest scores, scores will not be full and so we must
increment the count held in list[0], but once we have 5 high scores, the count should
remain fixed. This requirement can be handled by the lines

	if list[0] < SIZE
		 inc list[0]
	endif

The complete code for inserting a new high score is:

	rem *** Get new score ***
	Print(“Enter new score”)
	Sync()
	Sleep(1000)
	newscore = GetButtonEntry()
	rem *** Find insertion point ***
	post = 1
	while(post <= SIZE and list[post] >= newscore)
		 inc post
	endwhile
	rem *** Create space for new score ***
	for current = SIZE to post step -1
		 new = current + 1
		 list[new] = list[current];	
	next current
	rem *** Add new new score ***
	list[post] = newscore;
	rem *** Increment count ***
	if list[0] < SIZE
		 inc list[0]
	endif

With a few modifications we can make use of the program FIG-10.14 to test our code.

Activity 10.11

Start a new project called, TopScores. Compile the default code and copy the
files required by the Button functions into the appropriate folders in the new
project. Copy all the code from the latest version of DataCount to TopScore’s
main.agc.

In TopScores, modify case 1 in the select statement to match the code given
above. (There is no requirement to check if the array is full.) Add an extra
element to array list.

Test your program using the following data for the high scores:
	 23000, 11000, 17000, 46000, 9000
Display the list to make sure it is in descending order.

Add a new score 31000, and check that the score of 9000 is removed from the
list.

290� Hands On AGK BASIC: Arrays

Problem: Deleting a Value

Some situations require an item of data to be deleted from an existing list. Sometimes
we need to find and delete a specific value; other times way may want to delete the
entry at a specific position in the list irrespective of its value.

Solution:

To delete a value from a list, we must first locate that value and then eliminate it from
the list. FIG-10.19 shows the stages involved.

Notice that list[6] retains a copy of the final value in the list, but this will have no
effect on our code since, by reducing the count, the content of list[6] is no longer
regarded as part of the valid data.

If we want to delete the value held at position post, then the logic required to move
the other data items is:

	rem *** Delete entry by moving subsequent entries to left ***
	for current = post+1 to list[0]
		 list[current-1] = list[current]
	next current
	rem *** Reduce count ***
	dec list[0]

FIG-10.19

Deleting Data

We begin by locating the value to be
deleted. In this case it is the value in
list[3].

The value is deleted by overwriting it
with the value to the right.

list
0 1 65432

24 915 26 19

Entry to
be deleted

list
0 1 65432

24 911 26 19

Value to
be deleted is
overwritten

1

The remaining values are also moved
one position to the left.

Since we have now reduced the
number of values held, we must also
reduce the count in list[0].

list
0 1 65432

24 291 26 19

9 2

list
0 1 65432

24 291 25 19

Count
reduced

Data
count

Hands On AGK BASIC: Arrays� 291

When we accept a value for post, we must ensure that we are attempting to delete
from a position that contains data, so the following code is required:

	rem *** Get position ***
	Print(“Enter position of item to be deleted”)
	Sync()
	Sleep(1000)
	post = GetButtonEntry()
	while post < 1 or post > list[0]
		 Print(”The position is invalid. Re-enter.”)
		 Sync()
		 Sleep(1000)
		 post = GetButtonEntry()
	endwhile

When we want to delete a specific value from the list, we must first locate that value.
This requires logic very like that required for locating the sentinel in a list. However,
whereas we knew the sentinel would always appear in a sentinel-terminated list, we
cannot make the same guarantees for user-selected values (see FIG-10.20).

Our new logic must allow for both possibilities.

Activity 10.12

In DataCount, change the displayed menu so that the last two options are

	 4 - Delete from position
	 5 - QUIT

Make use of the code given above to add a new case 4: option in the select
statement which deletes the data from a specified position in the list.

Change case 5 : to be the quit option.

Change the condition in the until line to be option = 5.

Test your new code by first setting up 5 values in the list and then deleting the
last item of data, the third item of data and the first item of data. Display the
contents of the list after each delete.

 Save this updated version of DataCount.

FIG-10.20

Searching

When the value required exists, then
we search through the data until that
value is encountered.

When the required value does not
exist, the search must stop when we
reach the end of the data.

list
0 1 65432

24 291 ?5 19

9
value

value
compared with each cell

until match found

match

list
0 1 65432

24 291 ?5 19

8
value

no
match

292� Hands On AGK BASIC: Arrays

What we require can be described in structured English as:

	 Get value to be deleted
	 Start at beginning of list
	 WHILE not arrived at end of data AND value to be deleted not found DO
		 Move to next entry in the list
	 ENDWHILE

This translates into AGK BASIC as:

	//*** Enter value to be deleted ***
	Print(“Enter value to be deleted”)
	Sync()
	Sleep(1000)
	value = GetButtonEntry()

	//*** Search for value in list ***
	post = 1
	while (post <= list[0] and list[post] <> value)
		 inc post
	endwhile

Once the while loop has been completed, we need to check if the match was found.
If it was, the cell we stopped at will contain a value matching the required value and
this can be checked with the code:

	if list[post] = value

Having found a match, the contents of the array can then be re-arranged to delete the
specified entry and the count decremented.

Problem: Converting Numbers to Text

A common requirement in a program handling dates is to display a day or a month in
text rather than as a number. For example, sometimes we want to display the word
September rather than number 9 when showing a date.

Solution:

To perform this task we can set up an array containing the months of the year in text
form with the text for each month in the appropriate cell; so, cell 1 would contain the
word January, cell 2 February, etc.

In the code given below, we have a string array, local to a function, which contains

Activity 10.13

Modify Datacount so that the value to be deleted - not its position - is entered.
If the value to be deleted cannot be found, an appropriate message should be
displayed.

Test Data: 	 list 	 3, 6, 9, 12
		 Values to delete : 6, 12, 2

Display the list content after each deletion.

Save your project.

Hands On AGK BASIC: Arrays� 293

the names of the months of the year, When supplied with the month of the year as a
parameter, the function returns the corresponding string.

Print(MonthOfYear(8))
Sync()
do
loop

function MonthOfYear(v)
 if v < 1 or v > 12
 exitfunction “”
 endif
 dim month$[12] =[“”,”January”,”February”,”March”,”April”,
		 ”May”,”June”,”July”,”August”,”September”,”October”,
		 ”November”,”December”]
 result$ = month$[v]
endfunction result$

Dynamic Arrays
Sometimes it is not possible to know how large an array should be at the time we are
writing a program. For example, let’s say we need an array to hold the score achieved
by each player in a multi-player game.

The number of elements needed in the array depends on the number of people who
are actually playing on any specific occasion. To handle this situation, AGK BASIC
allows the size of an array to be set using a variable. A snippet of the code required
is shown below:

rem *** Find out how many people are playing ***
Print(“Enter the number of players”)
Sync()
Sleep(1000)
noofplayers = GetButtonEntry()
rem *** Set up an array of that size ***
dim scores[noofplayers]

Activity 10.14

Start a new project called UsingStringArrays, and implement the code given
above.

Test and save the project.

Activity 10.15

In project Shuffle we made use of two select statements to display the card
suit and the card values.

Modify Shuffle so that it makes use of string arrays to perform these tasks.

Test and save the project.

294� Hands On AGK BASIC: Arrays

The undim Statement
If a program creates a particularly large array with thousands of elements, or has very
many arrays, then it will occupy significant amounts of memory. This in turn may
slow down the speed at which your program runs. To avoid this, it is possible to
delete arrays which are no longer required using the undim statement which has the
format shown in FIG-10.21.

where:

	 arrayname		 is the name of the array to be deleted. The array must 	
				 have been created earlier using a dim statement.

For example, if, at the start of a program we had created an array with the line

	dim list[20]

then we could destroy that array later in our code using the line

	undim list[]

Multi-dimensional Arrays
Could we represent the game of chess using an array? The problem here is that the
chess board has rows and columns, while the arrays we have encountered up to now
are just one long list of values. Luckily AGK BASIC allows us to create arrays which
have both rows and columns. These are called two-dimensional arrays.

To do this we need to start by declaring our array using an extended form of the dim
statement in which the number of rows and columns are specified. For example, if
we wanted to keep the 6 best scores for 5 different players, we could set up a 5 row
by 6 columns array called scores using the line

	dim scores[4,5]

This would create the structure shown in FIG-10.22.

FIG-10.21

The undim Statement

undim [arrayname]

FIG-10.22

The scores 2D Array

This time we will
make use of the row
zero and column zero
in the array.

0 1 2 3 4 5
0

1

2

3

4

scores

scores[1][4]

scores[3][0]

scores[4][5]

Activity 10.16

Start a new project called DynamicArray. The program should create an
array of between 5 and 12 cells (this number to be chosen at random). Place a
random value (between 1 and 20) in each cell and finally, display the contents
of the array.

Hands On AGK BASIC: Arrays� 295

To access an individual element within a two-dimensional array, we must specify the
array name and the row and column numbers. The row and column values are
separated by a comma. For example, we could store the value 23 in the top-left cell
of the array marks, using the code:

	marks[0,0] = 23

Unfortunately, there is no option to initialise multi-dimensional arrays.

We saw earlier how we could use a for loop to access each element of a one-
dimensional array in turn. That same technique can be used to access a two dimensional
array. The only difference this time is that we need to employ two for loops.

Returning to our scores array, we could store a random value in each cell using the
following code:

	for row = 0 to 4
		 for col = 0 to 5
			 scores[row,col] = Random(1,20)
		 next col
	next row

3-Dimensional Arrays and Higher
There are situations where we may need an array with even more dimensions. For
example, if our players played with three levels of difficulty, then we would need an
array which had three dimensions (5 players, 6 scores, 3 levels). We would define
such an array with the statement:

Activity 10.18

Start a new project called Using2DArrays. In main.agc, create the array scores
with 5 rows and 6 columns.

Make use of the code given above to store a random value in the range 1 to 20
in each cell of the array.

Add more code to display the contents of each cell in the array. Display values
from the same row on one line.

Test and save your program.

Activity 10.17

Write the declarations necessary for the array structures pictured below (assume
all hold integer values; use any name you wish).

a) b)

c)

296� Hands On AGK BASIC: Arrays

	dim scores[4,5,2]

AGK BASIC allows for arrays of up to 8 dimensions. 				

Arrays and Functions
Arrays cannot be used as function parameters nor as return values. If you want to
make use of a non-local array within a function, then you must declare the array as a
global variable as in the line

	global dim numbers[20]

Summary
±	Arrays can be used to hold a collection of values.

±	Every value in an array must be of the same type.

±	Arrays are created using the dim statement.

±	The number of elements in an array can be specified as a constant, variable, or
expression.

±	Using a variable or expression to set the array’s size allows that size to be
varied each time the program is run.

±	Numeric arrays are created with the value zero in every element.

±	String arrays are created with empty strings in every element.

±	The space allocated to an array can be freed using the undim statement.

±	An array element is accessed by giving the array named followed by the
element’s subscript value enclosed in square brackets.

±	The first element in an array has a subscript value of zero.

±	The subscript can be a constant, variable or expression.

±	Arrays can have up to eight dimensions.

±	An array cannot be passed as a parameter to a function.

±	A function cannot return an array as a result.

Hands On AGK BASIC: Arrays� 297

Solutions
Activity 10.1

The condition newcore > score3 is true, so the lines executed
will be

	 score5 = score4

	 score4 = score3

	 score3 = newscore

Activity 10.2
The code for Array01:

rem *** Using Arrays ***

rem *** Declare array ***
dim dice[4]
rem *** Store values in array ***
for c = 1 to 4
 dice[c] = Random(1,6)
next c
rem *** Display the values held ***
for c = 1 to 4
 Print(dice[c])
next c
Sync()
do

loop

Activity 10.3
The for loop will result in the following values being stored
in numbers:

0,2,4,6,8,10,12,14,16

The final statement uses the contents of numbers[2] - which is
4 - minus 1 (which gives a result of 3) as the subscript in the
expression

	 numbers[numbers[2]-1] = 23

so the line can be interpreted as

	 numbers[3] = 23

so the final contents of the array are

0,2,4,23,8,10,12,14,16

Activity 10.4
Modified code for DiceCount:

rem *** Dice throw counter ***
rem ** Declare array ***
dim counts[10]
rem *** Throw the dice 1000 times ***
for c = 1 to 1000
	 rem *** Throw dice ***
	 dicethrow = Random(1,10)
	 rem *** Add to appropriate count ***
	 inc counts[dicethrow]
next c
rem *** Display each count ***
for c = 1 to 10
	 Print(Str(c)+” occurred “+Str(counts[c])+” times”)
next c
Sync()
do
loop

DiceCount with a constant:
rem *** Dice throw counter ***
#constant SIDES 10
rem ** Declare array ***
dim counts[SIDES]

rem *** Throw the dice 1000 times ***
for c = 1 to 1000
	 rem *** Throw dice ***
	 dicethrow = Random(1,SIDES)
	 rem *** Add to appropriate count ***
	 inc counts[dicethrow]
next c

rem *** Display each count ***
for c = 1 to SIDES
	 Print(Str(c)+” occurred “+Str(counts[c])+” times”)
next c
Sync()
do
loop

The only change required to deal with a 20-sided dice is:
#constant SIDES 20

Activity 10.5
Modified code for Lottery:

#constant HIGHEST = 49

dim lottery[HIGHEST]

rem *** FOR 6 times DO ***
for c = 1 to 6
	 rem *** Generate an unselected number ***
	 repeat
		 rem ***Generate number ***
		 number = Random(1,HIGHEST)
	 until lottery[number] = 0
	 rem *** Set corresponding cell ***
	 lottery[number] = 1
	 rem *** Display value ***
	 Print(number)
next c
Sync()
do
loop

Modified code for Lottery (numbers in ascending order):

#constant HIGHEST = 49

dim lottery[HIGHEST]

rem *** FOR 6 times DO ***
for c = 1 to 6
	 rem *** Generate an unselected number ***
	 repeat
		 rem ***Generate number ***
		 number = Random(1,HIGHEST)
	 until lottery[number] = 0
	 rem *** Set corresponding cell ***
	 lottery[number] = 1
next c
rem *** Display subscript of cells containing 1 ***
for c = 1 to HIGHEST
 if lottery[c] = 1
 Print(c)
 endif
next c
Sync()
do
loop

Activity 10.6
Modified code for Shuffle:

dim list[20]

rem *** Set up values in array ***
for c = 1 to 20
	 list[c] = c
next c
Print(“Original Order”)
rem *** Display contents ***
for c = 1 to 20
 PrintC(Str(list[c])+” “)
next c
Print(“”)

298� Hands On AGK BASIC: Arrays

rem *** Shuffle ***
for c = 1 to 200
	 rem *** Generate two subscript values ***
	 sub1 = Random(1,20)
	 sub2 = Random(1,20)
	 rem *** Swap values at these positions ***
	 temp = list[sub1]
	 list[sub1] = list[sub2]
	 list[sub2] = temp
next c
rem *** Display shuffled items ***
Print(“Shuffled order”)
for c = 1 to 20
	 PrintC(Str(list[c])+” “)
next c
Sync()
do
loop

Card version of Shuffle:
#constant SIZE 52
dim list[SIZE]

rem *** Set up values in array ***
for c = 1 to SIZE
	 list[c] = c-1
next c
Print(“”)
rem *** Shuffle ***
for c = 1 to SIZE *20
	 rem *** Generate two subscript values ***
	 sub1 = Random(1,SIZE)
	 sub2 = Random(1,SIZE)
	 rem *** Swap values at these positions ***
	 temp = list[sub1]
	 list[sub1] = list[sub2]
	 list[sub2] = temp
next c
rem *** Display shuffled items ***
Print(“First six cards”)
for c = 1 to 6
	 PrintC(Str(list[c])+” “)
next c
Sync()
do
loop

Notice that the value stored in list[c] is c-1 (so that we are
storing 0 to 51 rather than 1 to 52).

Named suits version of Shuffle:
#constant SIZE 52
dim list[SIZE]
rem *** Set up values in array ***
for c = 1 to SIZE
	 list[c] = c-1
next c
Print(“”)
rem *** Shuffle ***
for c = 1 to SIZE *20
	 rem *** Generate two subscript values ***
	 sub1 = Random(1,SIZE)
	 sub2 = Random(1,SIZE)
	 rem *** Swap values at these positions ***
	 temp = list[sub1]
	 list[sub1] = list[sub2]
	 list[sub2] = temp
next c
rem *** Display shuffled items ***
Print(“First six cards”)
for c = 1 to 6
	 PrintC(Str(list[c] mod 13+1) +” of “)
	 select list[c] / 13
 case 0:
 Print(“Hearts”)
 endcase
 case 1:
 Print(“Diamonds”)
 endcase
 case 2:
 Print(“Spades”)
 endcase
 case 3:
 Print(“Clubs”)
 endcase
 endselect

next c
Sync()
do
loop

When the value of the card is displayed in the statement
	 PrintC(Str(list[c] mod 13 + 1)+ “ of “)

the expression list[c] mod 13 makes sure we have a value
in the range 0 to 12. Since this is one less than the actual
value of the card, we add 1 to the value (with the term +1).

The expression list[c] /13 in the select statement
determines the suit. Hearts cards have values between 0 and
12, so any of these values will give an answer of 0 when
divided by 12 (remember integer division is performed); 13
to 25 is the diamonds (division by 12 gives a result of 1); etc.
So the select’s expression will give a result between 1 and 4
giving the suit of the card.

The named cards version of Shuffle:
#constant SIZE 52
dim list[SIZE]

rem *** Set up values in array ***
for c = 1 to SIZE
	 list[c] = c-1
next c
Print(“”)
rem *** Shuffle ***
for c = 1 to SIZE *20
	 rem *** Generate two subscript values ***
	 sub1 = Random(1,SIZE)
	 sub2 = Random(1,SIZE)
	 rem *** Swap values at these positions ***
	 temp = list[sub1]
	 list[sub1] = list[sub2]
	 list[sub2] = temp
next c
rem *** Display shuffled items ***
Print(“First six cards”)
for c = 1 to 6
 	select list[c] mod 13+1
 case 1:
 PrintC(“Ace”)
 endcase
 case 11:
 PrintC(“Jack”)
 endcase
 case 12:
 PrintC(“Queen”)
 endcase
 case 13:
 PrintC(“King”)
 endcase
 case default
 PrintC(List[c] mod 13+1)
 endcase
 	endselect
 	 PrintC(“ of “)
	 select list[c] / 13
 case 0:
 Print(“Hearts”)
 endcase
 case 1:
 Print(“Diamonds”)
 endcase
 case 2:
 Print(“Spades”)
 endcase
 case 3:
 Print(“Clubs”)
 endcase
 endselect
next c
Sync()
do
loop

The new select statement displays the appropriate term for
cards with values 1, 11, 12, or 13, all other cards have their
numeric value displayed.

Hands On AGK BASIC: Arrays� 299

Activity 10.7
No solution required.

Activity 10.8
Code for SentinelData:

#include “Buttons.agc”

#constant SIZE 5
dim list[SIZE]

rem *** Add sentinel value ***
list[0] = -99
//*** Repeat until quit selected ***
SetUpButtons()
repeat
 //*** Display menu ***
 Print(“1 - Enter value”)
 Print(“2 - Display number of values held”)
 Print(“3 - Display all values held”)
 Print(“4 - QUIT”)
 //*** Get option ***
 Print(“Enter option required(1-4)”)
 Sync()
 Sleep(4000)
 option = GetButtonEntry()
 while (option < 1 or option > 4)
 Print(“Invalid option. Re-enter.”)
 Sync()
 Sleep(2000)
 option = GetButtonEntry()
 endwhile
 //*** Execute option ***
 select option
 	case 1:	//*** Add a new value to the list ***
 Print(“Enter value to be added : “)
 Sync()
 Sleep(2000)
 value = GetButtonEntry()
 rem *** IF list not full ***
 if list[SIZE] <> -99
 rem *** Search for sentinel ***
 post = 0
 while list[post] <> -99
 inc post
 endwhile
 rem *** Insert new value... ***
 list[post] = value
 rem ***...followed by sentinel ***
 list[post+1] = -99
		 	 else
				 Print(“List is full”)
			 endif
			 Sync()
			 Sleep(2000)
 endcase
 case 2:	 //*** Display the number of items in
							 the list ***
 rem *** Search for sentinel ***
 post = 0
 while list[post] <> -99
 inc post
 endwhile
 Print(“The list contains “+Str(post)
					 +” entries”)
 Sync()
 Sleep(2000)
 endcase
 case 3:	 //*** Display the contents of the
							 list ***
 if (list[0] = -99)
 Print(“The list is empty”)
 else
 Print(“Values held are”)
 post = 0
 while list[post] <> -99
 PrintC(Str(list[post])+” “)
 inc post
 endwhile
 endif
 Sync()
 Sleep(2000)
 endcase
 case 4: //*** Quit program ***
 Print(“Quitting program in 2 seconds”)
 Sync()
 endcase

 endselect
until option = 4
Sleep(2000)

end

Activity 10.9
A new value could be placed in cells 1, 2, 3, 4, or 5.

Activity 10.10
Modified version of DataCount:

#include “Buttons.agc”

#constant SIZE 5
dim list[SIZE]

//*** Repeat until quit selected ***
SetUpButtons()
repeat
 //*** Display menu ***
 Print(“1 - Enter value”)
 Print(“2 - Display number of values held”)
 Print(“3 - Display all values held”)
 Print(“4 - QUIT”)
 //*** Get option ***
 Print(“Enter option required(1-4)”)
 Sync()
 Sleep(4000)
 option = GetButtonEntry()
 while (option < 1 or option > 4)
 Print(“Invalid option. Re-enter.”)
 Sync()
 Sleep(2000)
 option = GetButtonEntry()
 endwhile
 //*** Execute option ***
 select option
 	case 1:	//*** Add a new value to the list ***
 Print(“Enter value to be added : “)
 Sync()
 Sleep(2000)
 value = GetButtonEntry()
 if list[0] < SIZE
 rem *** Get insert position ***
 Print(“Enter position”)
 Sync()
 Sleep(1000)
 post = GetButtonEntry()
 while post < 1 or post > list[0]+1
 Print(“Position must be between
									 1 and “+Str(list[0]+1))
 Sync()
 Sleep(1000)
 post = GetButtonEntry()
 endwhile
 rem *** Make space for new value ***
 for c = list[0] to post step -1
 list[c+1] = list[c]
 next c
 rem *** Increment count ***
 inc list[0]
 rem *** Insert new value ***
						 list[post] = value

list
0 1 65432

13 3324 ?4 9

Values 24
and 33 are moved
to make space for

the new value

list
0 1 65432

13 332477 ?5 9

New value
added

Count
incremented

a)

b)

300� Hands On AGK BASIC: Arrays

					 else
						 Print(“List is full”)
					 endif
					 Sync()
					 Sleep(2000)
 endcase
 case 2:	 //*** Display the number of items in
							 the list ***
 Print(“The list contains “+Str(list[0])
					 +” entries”)
 Sync()
 Sleep(2000)
 endcase
 case 3:	 //*** Display the contents of the
							 list ***
 if (list[0] = 0)
 Print(“The list is empty”)
 else
 Print(“Values held are”)
 for c = 1 to list[0]
 PrintC(Str(list[c])+” “)
 next c
 endif
 Sync()
 Sleep(2000)
 endcase
 case 4: //*** Quit program ***
 Print(“Quitting program in 2 seconds”)
 Sync()
 endcase
 endselect
until option = 4
Sleep(2000)
end

Activity 10.11
Code for TopScores:

#include “Buttons.agc”

#constant SIZE 5

dim list[SIZE+1]

//*** Repeat until quit selected ***
SetUpButtons()
repeat
 //*** Display menu ***
 Print(“1 - Enter value”)
 Print(“2 - Display number of values held”)
 Print(“3 - Display all values held”)
 Print(“4 - QUIT”)
 //*** Get option ***
 Print(“Enter option required(1-4)”)
 Sync()
 Sleep(4000)
 option = GetButtonEntry()
 while (option < 1 or option > 4)
 Print(“Invalid option. Re-enter.”)
 Sync()
 Sleep(2000)
 option = GetButtonEntry()
 endwhile
 //*** Execute option ***
 select option
 		 case 1:	//*** Add a new value to the list ***

 rem *** Get new score ***
 Print(“Enter new score”)
 Sync()
 Sleep(1000)
 newscore = GetButtonEntry()
 rem *** Find insertion point ***
 post = 1
 while post <= SIZE and list[post] >=
 					 newscore
 inc post
 endwhile
 rem *** Create space for new score ***
 for current = SIZE to post step -1
 new = current + 1
 list[new] = list[current];
 next current
 rem *** Add new new score ***
 list[post] = newscore;
 rem *** Increment count ***
 if list[0] < SIZE
 inc list[0]

 endif
 endcase
 case 2:	 //*** Display the number of items in
							 the list ***
 Print(“The list contains “+Str(list[0])
					 +” entries”)
 Sync()
 Sleep(2000)
 endcase
 case 3:	 //*** Display the contents of the
							 list ***
 if (list[0] = 0)
 Print(“The list is empty”)
 else
 Print(“Values held are”)
 for c = 1 to list[0]
 PrintC(Str(list[c])+” “)
 next c
 endif
 Sync()
 Sleep(2000)
 endcase
 case 4: //*** Quit program ***
 Print(“Quitting program in 2 seconds”)
 Sync()
 endcase
 endselect
until option = 4
Sleep(2000)
end

Activity 10.12
Modified code for DataCount:

#include “Buttons.agc”

#constant SIZE 5
dim list[SIZE+1]

//*** Repeat until quit selected ***
SetUpButtons()
repeat
 //*** Display menu ***
 Print(“1 - Enter value”)
 Print(“2 - Display number of values held”)
 Print(“3 - Display all values held”)
 Print(“4 - Delete from position”)
 Print(“5 - QUIT”)
 //*** Get option ***
 Print(“Enter option required(1-5)”)
 Sync()
 Sleep(4000)
 option = GetButtonEntry()
 while (option < 1 or option > 5)
 Print(“Invalid option. Re-enter.”)
 Sync()
 Sleep(2000)
 option = GetButtonEntry()
 endwhile
 //*** Execute option ***
 select option
 case 1://*** Add a new value to the list ***
 Print(“Enter value to be added : “)
 Sync()
 Sleep(2000)
 value = GetButtonEntry()
 if list[0] < SIZE
 rem *** Get insert position ***
 Print(“Enter position”)
 Sync()
 Sleep(1000)
 post = GetButtonEntry()
 while post < 1 or post > list[0]+1
 Print(“Position must be between
									 and “ + Str(list[0]+1))
 Sync()
 Sleep(1000)
 post = GetButtonEntry()
 endwhile
 rem *** Make space for new value ***
 for c = list[0] to post step -1
 list[c+1] = list[c]
 next c
 rem *** Increment count ***
 inc list[0]
 rem *** Insert new value ***
 list[post] = value
 else

Hands On AGK BASIC: Arrays� 301

 Print(“List is full”)
 endif
 Sync()
 Sleep(2000)
 endcase
 case 2:	 //*** Display the number of items in
							 the list ***
 Print(“The list contains “+Str(list[0])
					 +” entries”)
 Sync()
 Sleep(2000)
 endcase
 case 3://*** Display contents of list ***
 if (list[0] = 0)
 Print(“The list is empty”)
 	 else
 Print(“Values held are”)
 for c = 1 to list[0]
 PrintC(Str(list[c])+” “)
 next c
 endif
 Sync()
 Sleep(2000)
 endcase
 case 4: //*** Delete from a specified
							 position ***
 rem *** Get position ***
 Print(“Enter position of item to be
					 deleted”)
 Sync()
 Sleep(1000)
 post = GetButtonEntry()
 while post < 1 or post > list[0]
 Print(“The position is invalid.
							 Re-enter.”)
 Sync()
 Sleep(1000)
 post = GetButtonEntry()
 endwhile
 rem *** Delete entry ***
 for current = post+1 to list[0]
 list[current-1] = list[current]
 next current
 rem *** Reduce count ***
 dec list[0]
 endcase
 case 5: //*** Quit program ***
 Print(“Quitting program in 2 seconds”)
 Sync()
 endcase
 endselect
until option = 5
Sleep(2000)
end

Activity 10.13
Modified code for DataCount:

#include “Buttons.agc”

#constant SIZE 5
dim list[SIZE+1]

//*** Repeat until quit selected ***
SetUpButtons()
repeat
 //*** Display menu ***
 Print(“1 - Enter value”)
 Print(“2 - Display number of values held”)
 Print(“3 - Display all values held”)
 Print(“4 - Delete value”)
 Print(“5 - QUIT”)
 //*** Get option ***
 Print(“Enter option required(1-5)”)
 Sync()
 Sleep(4000)
 option = GetButtonEntry()
 while (option < 1 or option > 5)
 Print(“Invalid option. Re-enter.”)
 Sync()
 Sleep(2000)
 option = GetButtonEntry()
 endwhile
 //*** Execute option ***
 select option
 case 1://*** Add a new value to the list ***
 Print(“Enter value to be added : “)
 Sync()

 Sleep(2000)
 value = GetButtonEntry()
 if list[0] < SIZE
 rem *** Get insert position ***
 Print(“Enter position”)
 Sync()
 Sleep(1000)
 post = GetButtonEntry()
 while post < 1 or post > list[0]+1
 Print(“Position must be between
									 and “ + Str(list[0]+1))
 Sync()
 Sleep(1000)
 post = GetButtonEntry()
 endwhile
 rem *** Make space for new value ***
 for c = list[0] to post step -1
 list[c+1] = list[c]
 next c
 rem *** Increment count ***
 inc list[0]
 rem *** Insert new value ***
 list[post] = value
 else
 Print(“List is full”)
 endif
 Sync()
 Sleep(2000)
 endcase
 case 2:	 //*** Display the number of items in
							 the list ***
 Print(“The list contains “+Str(list[0])
					 +” entries”)
 Sync()
 Sleep(2000)
 endcase
 case 3://*** Display contents of list ***
 if (list[0] = 0)
 Print(“The list is empty”)
 	 else
 Print(“Values held are”)
 for c = 1 to list[0]
 PrintC(Str(list[c])+” “)
 next c
 endif
 Sync()
 Sleep(2000)
 endcase
 case 4: //*** Delete value ***
 //*** Enter value to be deleted ***
 Print(“Enter value to be deleted”)
 Sync()
 Sleep(1000)
 value = GetButtonEntry()
 //*** Search for value in list ***
 post = 1
 while (post <= list[0] and list[post] <>
					 value)
 inc post
 endwhile
 rem *** IF match found, delete entry ***
 if list[post] = value
 rem *** Delete entry ***
 for current = post+1 to list[0]
 list[current-1] = list[current]
 next current
 rem *** Reduce count ***
 dec list[0]
 endif
 endcase
 case 5: //*** Quit program ***
 Print(“Quitting program in 2 seconds”)
 Sync()
 endcase
 endselect
until option = 5
Sleep(2000)

end

Activity 10.14
No solution required.

302� Hands On AGK BASIC: Arrays

Activity 10.15
Modified code for Shuffle:

#constant SIZE 52
dim list[SIZE]

rem *** Set up values in array ***
for c = 1 to SIZE
	 list[c] = c-1
next c
Print(“”)
rem *** Shuffle ***
for c = 1 to SIZE *20
	 rem *** Generate two subscript values ***
	 sub1 = Random(1,SIZE)
	 sub2 = Random(1,SIZE)
	 rem *** Swap values at these positions ***
	 temp = list[sub1]
	 list[sub1] = list[sub2]
	 list[sub2] = temp
next c
rem *** Display shuffled items ***
dim values$[13]=[“”,”Ace”,”2”,”3”,”4”,”5”,”6”,”7”,
						 ”8”,”9”,”10”,”Jack”,”Queen”,”King”]
dim suits$[4]=[“”,”Hearts”,”Diamonds”,”Spades”,
						 ”Hearts”]
Print(“First six cards”)
for c = 1 to 6
 	PrintC(values$[list[c] mod 13 + 1])
 	PrintC(“ of “)
	 Print(suits$[list[c] / 13 + 1])
next c
Sync()
do
loop

The three display statements could even be combined into a
single line:

Print(Str(values$[list[c] mod 13 + 1]))+“ of “+
		 Str(suits$[list[c] / 13 + 1]))

Activity 10.16
Code for DynamicArray:

rem *** Decide size of array ***
size = Random(5,12)
rem *** Set up array ***
dim list[size]
rem *** Store a value in each cell ***
for c = 0 to size
 list[c] = Random(1,20)
next c
rem *** Display the contents of the array ***
for c = 0 to size
 Print(list[c])
next c
Sync()
do
loop

Activity 10.17

a) dim matrix[2,13]

b) dim matrix [4,1]

c) dim list[7] This is a one-dimensional array

Activity 10.18
Code for Using2DArrays:

rem *** Set up array ***
dim scores[4,5]
rem *** Store values in arrays ***
for row = 0 to 4
 for col = 0 to 5
 scores[row,col] = Random(1,20)
 next col
next row
for row = 0 to 4
 for col = 0 to 5

 PrintC(Str(scores[row,col])+” “)
 next col
 Print(“”)
next row
Sync()
do
loop

