
Hands On AGK BASIC : Spot the Difference Game� 175

Spot the Difference Game

In this Chapter:

T Designing Screen Layouts

T	Creating Sprite Images

T	Adding Background Music

T	Adding Sound Effects

T	Changing Screen Orientation

T	Game Testing

176� Hands On AGK BASIC: Spot the Difference Game

Game - Spot the Difference

Introduction
At last, we know enough AGK BASIC to create a first game. This game is a 21st
century update on the spot-the-difference game so beloved of many magazines. The
game shows two almost identical images and the challenge is to spot the differences
between the two images.

Game Design
When creating a game, there are many aspects of that game that we have to think
about before we start to write program code.

Since this is a computer game derived from an existing paper-based one, we don’t
have to worry about giving an in-depth description of the game, defining the rules or
stating how the game is won.

On the other hand, we still need to design the screen layout for the game. In fact, there
may be several layouts to design: a start-up splash screen, the main game screen, an
end-game screen and a credits screen detailing all those involved in the game
development. Not only the overall screen designs need to be considered, but also the
design of any individual sprites that may appear during the game play.

Any background music and sound effects not only have to be created, but when these
are to be played also needs to be specified.

User interaction methods and help options are other aspects that have to be considered.

Game Description

In our game, the player is presented with two almost identical images. The left-hand
image is the original image; the right-hand image has six modifications. The aim of
the game is for the player to click (press) on the areas of the right-hand image that
differ from those in the left-hand image.

The time elapsed since the start of the game is continually displayed.

The total time (in seconds) taken to find all six differences is displayed at the end of
the game.

Screen Layouts

This game will have four screen layouts: splash screen, game screen, finish screen
and credits screen.

You may want to create a rough drawing of the various screen layouts before going
on to create a more detailed design using a drawing or paint package.

Another important point at this stage is to consider the screen size and resolution of
the device(s) on which you want the game to run. Although AGK will allow your
game to run on almost any platform, you may still want to consider how the screen
size will affect the playability of your game. For example, 10 buttons along the right-
hand edge of an iPad looks fine, but try the same thing on an iPhone and only the

Hands On AGK BASIC: Spot the Difference Game� 177

smallest of fingers will be able to use the buttons easily! And what about the near
future? If you create images which are 1024 x 768 pixels in size with the iPad 2 in
mind, what happens if a later iPad has a screen resolution of 2048 x 1536 pixels?
Your images may not look as good on that!

For this game, the screen layouts have been designed using Adobe Illustrator which
is a vector-drawing package. The great advantage of a vector-based image is that it
can be converted to a regular bitmap image giving the best possible quality for a
required resolution.

The splash screen (filename : AGKSplash.png) is shown in FIG-7.1.

This is a single PNG image. Note that it includes the name of the game, the company
name (Digital Skills), text stating that it was built using AGK and the AGK website
address. This last element is requested of you by The Game Creators if you are
going to publish your app, but is not compulsory.

The second image (see FIG-7.2) is of the game screen containing the two photographs
that form the game. This is the only image in landscape mode.

FIG-7.1

The Splash Screen pot the Difference

Made with AGK www.appgamekit.com

pot the Difference
Original Press on the 6 Di�erences

Time :
FIG-7.2

The Main Screen

178� Hands On AGK BASIC: Spot the Difference Game

The photos themselves are not separate entities but part of the single overall image.
Note that the top right corner leaves a gap where the time is to be displayed in real-
time.

The third image is the end screen which shows the total time taken in seconds (see
FIG-7.3).

Again, you can see that a space has been left for the actual number of seconds taken
to find all the differences. In addition, this screen also shows a separate button sprite
in the bottom-right which allows the user to view the credits screen if required.

The final screen (see FIG-7.4) shows the names of those involved in creating the
various aspects of the game: graphics, code, music. It also adds copyright details and
the AGK logo.

FIG-7.3

The End Screen

pot the Difference

You found all 6 di�erences in:

 seconds

Credits

FIG-7.4

The Credits Screen pot the Difference

Credits

Coding Alistair Stewart

Alistair Stewart
Music Emily Aurora Knight

©2011 Digital Skills

Graphics

Hands On AGK BASIC: Spot the Difference Game� 179

A final visual component is the ring which appears around the differences in the
photograph when the player presses in the correct area. Although there will be six of
these, all make use of the same image (see FIG-7.5).

Other Resources

The only other resources used in the game are a sound effect, which plays when a
modified area of the photo is pressed for the first time, and music which plays in the
background while the game is running.

Overall Game Document

A useful document to produce is one showing not only the four screen layouts but
also giving details of any sounds or actions that can occur during each stage of the
game (see FIG-7.6).

FIG-7.5

The Circle Spite

FIG-7.6

The Overall Game
Document

pot the Difference

Made with AGK www.appgamekit.com

pot the Difference
Original Press on the 6 Di�erences

Time : xxx

pot the Difference

You found all 6 di�erences in:

xxx seconds

Credits

pot the Difference
Credits

Coding Alistair Stewart

Music Emily Aurora Knight

©2011 Digital Skills

Splash Screen

Main Screen

End Screen

Credits Screen

Music begins
Rings appear around
 correctly selected areas
Sound effect when ring
 appears
Time in seconds displayed

Music continues
Displays total time taken to
 find all differences

Music continues

time

All differences found

Credits button pressed

1

2

3

4

time

180� Hands On AGK BASIC: Spot the Difference Game

In the Main and End screen layouts X’s are used to indicate where text is to be
positioned, but the exact value of that text is unknown at the time of the design.

The Main screen is in landscape mode, while the other three screens are designed for
portrait mode. As a general rule, it is best not to switch between modes within a game,
but in this example it is interesting to see how the actual game play experience is
affected by the transition.

On the right of FIG-7.6 is a state-transition diagram. The numbered circles represent
the four different screen layouts. When each new screen appears during the game we
consider the game to have entered a new state. The lines between the circles represent
the moving from one state to another (i.e. from one screen to another). The text
beside the lines explains what causes the game to move from one state to another. So
we see that we move from the splash screen to the main game screen once an
unspecified amount of time has passed; we move from the main screen to the end
screen when all 6 differences have been found. Notice that we move to the credits
screen only if the Credits button is pressed and that we return from the credits screen
to the end screen after some time has elapsed.

For a more complex game, we might need to give greater detail for the design of each
screen and the individual sprites which may appear on that screen.

Copyright Issues

Of course, if you intend to create a game simply for the amusement of yourself and
your family, then making use of images you find on the internet, or adding your
favourite music to the game isn’t really a problem. However, should you wish to turn
your game into a commercial product then you must make sure all aspects of the
game are either copyright free, that you have permission from the copyright holder
to use the material, or that the material is entirely of your own creation.

Even if you created the photographs used in a game, you can still breach copyright.
For example, you can’t use someone’s image in a commercial product without their
approval. You can’t even use some buildings! If you were to use images taken in a
Disney park for example, you would probably have their lawyers on your doorstep
before you had made your first 10 sales!

Even if you record your own music, the melody itself may be copyrighted. Play and
write your own music to be on the safe side.

You mustn’t even borrow a one second sound effect without approval.

Don’t worry! There are websites which offer copyright free material - but check that
it can be used in a commercial product.

Finally, the images have no copyright problems, you have written and played the
music, created all the sound effects, so you must be safe now, right? Afraid not! If
you save your music in MP3 format, you’ll find another set of lawyers wanting to
have a few words. This time it won’t happen until you’ve sold 5000 copies of your
game but at that point you’ll have to hand over large sums of money for the privilege
of using the MP3 format. The way round this one is to use the OGG Vorbis format
for your music files. AGK will automatically look for a file in this format even when
your code specifies MP3.

And once you’ve made sure all your resources have no copyright issues, are you safe
at last to write your game? Well, not entirely. You can still be on the receiving end of

Hands On AGK BASIC: Spot the Difference Game� 181

a legal communication if someone thinks you’ve ripped off their game idea or even
if your code makes use of some technique that has been copyrighted.

Have you given up all hope of creating a commercial game? Well, you can do a few
things to protect yourself from the unexpected legal challenge. One option is to set
up a limited company and publish your games through that (it’s really not too
complicated). Using this method, only your company can be sued if the worst should
happen - not you. So you won’t have to sell your home and flash new car to pay all
the legal claims that have arrived on the doorstep.

And perhaps the easiest option of all is to let The Game Creators publish your game
for you. Okay they are going to want 30%, but on the other hand they will test your
game, suggest any changes, market it for you, even add revenue-gathering adverts
and organise the cut-down free version and the paid-for full version. Chances are
you’ll sell more copies through them than you would do on your own and even after
giving them their cut, you’ll still make more money. And perhaps best of all, they are
legally responsible - not you. Now, on with the game ...

Game Logic

The next stage is to do a high-level structured English description of the game.

The first level should be kept short:

	 1	 Load resources
	 2	 Set up game screen
	 3	 Play game
	 4	 End game

More detail can be added to each of these using stepwise refinement:

	 1 Load resources
		 1.1	Load images
		 1.2 Load sound
		 1.3 Load music

	 2 Set up game screen
		 2.1 Start music
		 2.2 Display Main screen
		 2.3 Add circles over differences
		 2.4 Hide circles

	 3 Play game
		 3.1 Start timer
		 3.2 REPEAT
		 3.3		 IF user selected a difference THEN
		 3.4			 Show ring
		 3.5			 Play sound effect
		 3.6		 ENDIF
		 3.7 		 Update time
		 3.8	UNTIL all 6 differences selected
		 3.9 Delete Main screen resources

	 4 End game	
		 4.1 Show End screen
		 4.2 Display time taken
		 4.3 Display Credits button
		 4.4 DO
		 4.5 		 IF Credits button pressed THEN
		 4.6			 Show Credits screen for 5 seconds
		 4.7 		 ENDIF
		 4.8 LOOP

182� Hands On AGK BASIC: Spot the Difference Game

Game Code
The game code follows the logic given above. The first section loads the resources
but also includes comments on the overall program.

Structured English:

	 Load resources

Code:

rem *************************************
rem * program : Spot the Difference *
rem * version : 1.0 *
rem * language : AGK BASIC v1.02 *
rem * date : 18 Aug 2011 *
rem * author : A. Stewart *
rem * platform : Ipad 1 *
rem *************************************

rem *** Load resources ***

rem *** Load images ***
main = LoadImage(“Main.jpg”)
finish = LoadImage(“End.jpg”)
credits = LoadImage(“Credits.jpg”)
ring = LoadImage(“Ring.png”,0)
button = LoadImage(“Button.bmp”,1)

rem *** Load sounds ***
ringsound = LoadSound(“Click.wav”)

rem *** Load music ***
backgroundmusic = LoadMusic(“Background.wav”)

Structured English:

	 Set up game screen

Code:

rem *** Play music ***
PlayMusic(BackgroundMusic)

rem *** Show main screen ***
CreateSprite(1,main)
SetSpriteSize(1,100,100)

rem *** Load rings at image differences ***
CreateSprite(2,ring)
SetSpriteSize(2,-1,10)
SetSpritePosition(2,91,86)
CloneSprite(3,2)
SetSpritePosition(3,51.5,22)
CloneSprite(4,2)
SetSpritePosition(4,49,68)
CloneSprite(5,2)
SetSpritePosition(5,73,66)
CloneSprite(6,2)
SetSpritePosition(6,88.5,66)
CloneSprite(7,2)

Hands On AGK BASIC: Spot the Difference Game� 183

SetSpritePosition(7,55.75,62.5)

rem *** Hide rings ***
for c = 2 to 7
 SetSpriteDepth(c,9)
 SetSpriteVisible(c,0)
next c
rem *** Update screen ***
Sync()

Structured English:

	 Play game

Code:

rem *** Start timer ***
start = GetSeconds()
CreateText(1,Str(timetaken))
SetTextColor(1,0,0,0,255)
SetTextPosition(1,88,6)

rem *** Set count of differences found ***
found = 0
rem *** Get user clicks until all 6 differences found ***
repeat
		 rem *** Check for clicked button ***
 pressed = GetPointerPressed()
		 rem *** IF pressed, then check for sprite hit ***
 if pressed = 1
 x = GetPointerX()
 y = GetPointerY()
 hit = GetSpriteHit(x,y)
 rem *** IF clicked over hidden ring THEN
 if hit > 1 and hit <=7 and GetSpriteVisible(hit)=0
 rem *** Show ring ***
 SetSpriteVisible(hit,1)
 rem *** Play sound effect ***
 PlaySound(1)
 rem *** Add 1 to differences found ***
 found = found + 1
 endif
 endif
 rem *** Update time so far ***
 timetaken = GetSeconds() - start
 SetTextString(1,Str(timetaken))
 Sync()
until found = 6

rem *** Delete existing sprites ***
for c = 1 to 7
 DeleteSprite(c)
next c
rem *** Delete sound ***
DeleteSound(ringsound)
rem *** Delete text ***
DeleteText(1)

Note that we have had to add a found variable to keep count of how many differences
have been found.

184� Hands On AGK BASIC: Spot the Difference Game

Structured English:

End game

Code:

rem *** Show End screen... ***
CreateSprite(1,finish)
SetSpriteSize(1,100,100)
rem *** ... with button... ***
CreateSprite(2,button)
SetSpriteSize(2,15,-1)
SetSpritePosition(2,80,90)
rem *** ...and total time taken ***
CreateText(1,Str(timetaken))
SetTextColor(1,0,0,0,255)
SetTextPosition(1,36,31)
Sync()

rem *** Allow for Credits button press ***
do
 pressed = GetPointerPressed()
 if pressed = 1
 x = GetPointerX()
 y = GetPointerY()
 hit = GetSpriteHit(x,y)
 rem *** IF Credit button pressed THEN ***
 if hit = 2
 rem *** Show credits screen for 5 seconds ***
 CreateSprite(3,credits)
 SetSpriteSize(3,100,100)
 SetSpriteDepth(3,8)
 Sync()
 Sleep(5000)
 rem *** Remove Credits screen ***
 DeleteSprite(3)
 endif
 endif
 Sync()
loop

The Credits screen is displayed “on top of” the End screen, so when it is deleted after
5 seconds, the End screen reappears.

No program is likely to be perfect on the first attempt. Perhaps there will be problems
with the code: the logic may be wrong and this will be highlighted during testing.

Activity 7.1

Start a new project called SpotTheDifference and compile the default code so
that the project’s media folder is created.

From AGKDownloads/Chapter7, copy all the files in the folder to the project’s
media folder.

In setup.agc set width to 1024 and height to 768. This will create a landscape
oriented app window.

Modify main.agc to match the code given over the last few pages. Test and
save your code. What problems occurred?

Hands On AGK BASIC: Spot the Difference Game� 185

The main problem with this first version of the game is caused by the fact that the
main screen is in landscape mode but the End and Credits screens are in portrait
mode. To get this to operate correctly, we need to change the screen orientation after
the game is complete.

SetDisplayAspect()

We can change the screen’s aspect ratio using the SetDisplayAspect() statement. In
this statement we set the ratio of the width to the height. At the start of a program, the
aspect ratio is determined by the values given for width and height in the setup.agc
file. When the program is running, we can change to portrait orientation (but without
changing the actual app window dimensions) using the line:

	SetDisplayAspect(768/1024.0)

 The SetDisplayAspect() statement has the format shown in FIG-7.7.

where:

	 value		 is a real number giving the ratio of the width to the height.

An important aspect to check is the finer details of game playability. For example,
you may have noticed that when the last difference is found, the game jumps
immediately to the End screen without giving the player a chance to see the placing
of that final ring. We could solve this problem by getting the program to pause for
one second before the End screen appears.

A major problem with the game is that it has no way of stopping the player just
pressing anywhere at random in the hope of hitting on a difference merely by chance.
To stop this, we could introduce a maximum number of presses on the modified
image. Perhaps 7 - this would allow the player one wrong attempt. However,
introducing this change would mean that a new screen would have to be introduced

One of the numbers has
to be real so that the
calculation will produce a
real (not integer) result.

FIG-7.7

SetDisplayAspect()

SetDisplayAspect ()value

Activity 7.2

Modify your program so that, immediately after the resources of the main
screen have been deleted, the display ratio is set using the lines:

	 rem *** Reset aspect ratio ***
	 SetDisplayAspect(768.0/1024.0)

Retest and save your program.

Activity 7.3

Add the lines

	 rem *** Wait before showing next screen ***
	 Sleep(1000)

immediately after the DeleteText(1) line.

Test this modification and check that the player has time to see the final ring
in position before the End screen appears.

186� Hands On AGK BASIC: Spot the Difference Game

into the game, showing that the player had failed to complete the game. The Failed
image is shown in FIG-7.8. This page will also show the Credits button.

This modification to the program means that various parts of the game documentation
also need to be changed. The first of these is the overall game document showing the
various pages of the game and the state-transition diagram. The updated version of
this document is shown in FIG-7.9.

pot the Difference

Sorry!
You failed to spot
all the differences
after 7 attempts

FIG-7.8

The Fail Screen

FIG-7.9

The Updated Game
Document

pot the Difference

Made with AGK www.appgamekit.com

pot the Difference
Original Press on the 6 Di�erences

Time : xxx

pot the Difference

You found all 6 di�erences in:

xxx seconds

Credits

Splash Screen

Main Screen

Failed Screen

End Screen

Credits Screen

Music begins
Rings appear around
 correctly selected areas
Sound effect when ring
 appears
Time in seconds displayed

Music continues
Displays total time taken to
 find all differences

Music continues

time

All differences
found

Credits button
pressed

1

2

4

3

5
time and
all differences
found

pot the Difference
Credits

Coding Alistair Stewart

Alistair Stewart
Music Emily Aurora Knight

©2011 Digital Skills

Graphics

pot the Difference

Sorry!
You failed to spot
all the differences
after 7 attempts

Credits

Music continues
Displays failed message

7 presses and
all differences
not found

Credits button
pressed

time and
all differences
not found

Hands On AGK BASIC: Spot the Difference Game� 187

Note how much the state-transition diagram has changed. Not only have the state
numbers assigned to the End and Credits screens changed, but the paths through the
structure have become much more complex. From the Main screen (2) we may go to
the End screen (4) if all 6 differences are found, but there is also an option to go to
the Fail screen (3) when 7 presses have been made without all 6 differences being
found. Both screens 3 and 4 have an option to show the Credits screen (5) for a set
time period before screen 3 or 4 reappears. When the paths through the game start to
become complex (as in this case), the state-transition diagram is a great way of
maintaining an easy-to-follow overview of the whole game process.

The next part of the documentation to be changed is the structured English. Level 1
remains unchanged but the breakdown of some of its steps need to be modified. The
updated logic is shown below with the changes highlighted.

	 3 Play game
		 3.1 Start timer
		 3.2 REPEAT
		 3.3		 IF user selected a difference THEN
		 3.4			 Show ring
		 3.5			 Play sound effect
		 3.6		 ENDIF
		 3.7 		 Update time
		 3.8	UNTIL all 6 differences selected or 7 presses made
	 	 3.9 Delete Main screen resources

	 4 End game	
		 4.1 IF all 6 differences found THEN
		 4.2		 Show End screen
		 4.3 		 Display time taken
		 4.4 ELSE
		 4.5		 Show Fail screen
		 4.6 ENDIF
		 4.7 Display Credits button
		 4.8 DO
		 4.9 		 IF credits button pressed THEN
		 4.10			 Show Credits screen for 5 seconds
		 4.11	 ENDIF
		 4.12 LOOP

Luckily, returning from the Credits screen to either the End or Failed screen isn’t a
problem since the Credits screen is shown on top of the previous screen. When the
Credits screen is removed the appropriate screen will reappear.

Activity 7.4

Update your project to implement the changes described above. This requires
the following steps:

• Copy the file Fail.jpg to the media folder.
• Add a line of code to load the image.
• The ID given to the image should be stored in the variable fail.
• Before the repeat..until loop, create a variable called presscount and
	 set it to zero. Increment this variable every time pressed = 1 is true.
• Add or presscount = 7 to the condition in the until statement.
• Add the code for the new if statement described in the End Game structured
	 English.

Check that the updated version of the program operates correctly by first
winning a game and then losing one. Check that the Credits screen shows
correctly in both cases. Resave your project.

Update the program’s
comments as
appropriate.

188� Hands On AGK BASIC: Spot the Difference Game

Solutions
Activity 7.1

The media folder should contain the following files:

	 AGKSplash.png
	 Background.wav
	 Button.bmp
	 Click.wav
	 Credits.jpg
	 End.jpg
	 Main.jpg
	 Ring.png

The dimension setting lines in setup.agc should be changed
to:

	 width=1024
	 height=768

The complete program code in main.agc is:
rem *************************************
rem * program : Spot the Difference *
rem * version : 1.0 *
rem * language : AGK BASIC v1.02 *
rem * date : 18 Aug 2011 *
rem * author : A. Stewart *
rem * platform : Ipad 1 *
rem *************************************

rem *** Load resources ***

rem *** Load images ***
main = LoadImage(“Main.jpg”)
finish = LoadImage(“End.jpg”)
credits = LoadImage(“Credits.jpg”)
ring = LoadImage(“Ring.png”,0)
button = LoadImage(“Button.bmp”,1)

rem *** Load sounds ***
ringsound = LoadSound(“Click.wav”)

rem *** Load music ***
backgroundmusic = LoadMusic(“Background.wav”)

rem *** Play music ***
PlayMusic(BackgroundMusic)

rem *** Show main screen ***
CreateSprite(1,main)
SetSpriteSize(1,100,100)

rem *** Load rings at image differences ***
CreateSprite(2,ring)
SetSpriteSize(2,-1,10)
SetSpritePosition(2,91,86)
CloneSprite(3,2)
SetSpritePosition(3,51.5,22)
CloneSprite(4,2)
SetSpritePosition(4,49,68)
CloneSprite(5,2)
SetSpritePosition(5,73,66)
CloneSprite(6,2)
SetSpritePosition(6,88.5,66)
CloneSprite(7,2)
SetSpritePosition(7,55.75,62.5)

rem *** Hide rings ***
for c = 2 to 7
 SetSpriteDepth(c,9)
 SetSpriteVisible(c,0)
next c
rem *** Update screen ***
Sync()

rem *** Start timer ***
start = GetSeconds()
CreateText(1,Str(timetaken))
SetTextColor(1,0,0,0,255)
SetTextPosition(1,88,6)

rem *** Set count of differences found ***
found = 0

rem *** Get user clicks until all 6 differences
found ***
repeat
		 rem *** Check for clicked button ***
 pressed = GetPointerPressed()
		 rem *** IF pressed, check for sprite hit ***
 if pressed = 1
 x = GetPointerX()
 y = GetPointerY()
 hit = GetSpriteHit(x,y)
 rem *** IF clicked over hidden ring THEN
 if hit > 1 and hit <=7 and
				 GetSpriteVisible(hit)=0
 rem *** Show ring ***
 SetSpriteVisible(hit,1)
 rem *** Play sound effect ***
 PlaySound(1)
 rem *** Add 1 to differences found ***
 found = found + 1
 endif
 endif
 rem *** Update time so far ***
 timetaken = GetSeconds() - start
 SetTextString(1,Str(timetaken))
 Sync()
until found = 6

rem *** Delete existing sprites ***
for c = 1 to 7
 DeleteSprite(c)
next c
rem *** Delete sound ***
DeleteSound(ringsound)
rem *** Delete text ***
DeleteText(1)

rem *** Show End screen... ***
CreateSprite(1,finish)
SetSpriteSize(1,100,100)
rem *** ... with button... ***
CreateSprite(2,button)
SetSpriteSize(2,15,-1)
SetSpritePosition(2,80,90)
rem *** ...and total time taken ***
CreateText(1,Str(timetaken))
SetTextColor(1,0,0,0,255)
SetTextPosition(1,36,31)
Sync()

rem *** Allow for Credits button press ***
do
 pressed = GetPointerPressed()
 if pressed = 1
 x = GetPointerX()
 y = GetPointerY()
 hit = GetSpriteHit(x,y)
 rem *** IF Credit button pressed THEN ***
 if hit = 2
 rem *** Show credits for 5 secs ***
 CreateSprite(3,credits)
 SetSpriteSize(3,100,100)
 SetSpriteDepth(3,8)
 Sync()
 Sleep(5000)
 rem *** Remove Credits screen ***
 DeleteSprite(3)
 endif
 endif
 Sync()
loop

The main problem is that although the main screen appears
correctly, the End and Fail screens are not positioned
correctly.

Activity 7.2
The new lines (shown in bold) should be placed as follows:

rem *** Reset aspect ratio ***
SetDisplayAspect(768.0/1024.0)

rem *** Show End screen... ***
CreateSprite(1,finish)
SetSpriteSize(1,100,100)

This modification should ensure the End screen is correctly
sized.

Hands On AGK BASIC: Spot the Difference Game� 189

Activity 7.3
The new lines (shown in bold) should be placed as follows:

DeleteText(1)

rem *** Wait before showing next screen ***
Sleep(1000)

rem *** Show End screen ***
CreateSprite(1,finish)

This gives a slight delay before the main screen disappears.

Activity 7.4
The file Fail.jpg should be added to the project’s media file.

The final program code should be:
rem *************************************
rem * program : Spot the Difference *
rem * version : 1.1 *
rem * language : AGK BASIC v1.02 *
rem * date : 18 Aug 2011 *
rem * author : A. Stewart *
rem * platform : Ipad 1 *
rem *************************************

rem *** Load resources ***

rem *** Load images ***
main = LoadImage(“Main.jpg”)
finish = LoadImage(“End.jpg”)
credits = LoadImage(“Credits.jpg”)
ring = LoadImage(“Ring.png”,0)
button = LoadImage(“Button.bmp”,1)
fail = LoadImage(“Fail.jpg”)

rem *** Load sounds ***
ringsound = LoadSound(“Click.wav”)

rem *** Load music ***
backgroundmusic = LoadMusic(“Background.wav”)

rem *** Play music ***
PlayMusic(BackgroundMusic)

rem *** Show main screen ***
CreateSprite(1,main)
SetSpriteSize(1,100,100)

rem *** Load rings at image differences ***
CreateSprite(2,ring)
SetSpriteSize(2,-1,10)
SetSpritePosition(2,91,86)
CloneSprite(3,2)
SetSpritePosition(3,51.5,22)
CloneSprite(4,2)
SetSpritePosition(4,49,68)
CloneSprite(5,2)
SetSpritePosition(5,73,66)
CloneSprite(6,2)
SetSpritePosition(6,88.5,66)
CloneSprite(7,2)
SetSpritePosition(7,55.75,62.5)

rem *** Hide rings ***
for c = 2 to 7
 SetSpriteDepth(c,9)
 SetSpriteVisible(c,0)
next c
rem *** Update screen ***
Sync()

rem *** Start timer ***
start = GetSeconds()
CreateText(1,Str(timetaken))
SetTextColor(1,0,0,0,255)
SetTextPosition(1,88,6)

rem *** Set count of differences found ***
found = 0
rem *** Number of clicks so far is zero ***
presscount = 0
rem *** Get user clicks until all 6 differences
found ***
repeat
		 rem *** Check for clicked(pressed)
 pressed = GetPointerPressed()

		 rem *** IF pressed, ***
 if pressed = 1
			 rem *** Add 1 to clicks ***
			 inc presscount
			 rem *** Check for sprite hit ***
 x = GetPointerX()
 y = GetPointerY()
 hit = GetSpriteHit(x,y)
 rem *** IF clicked over hidden ring THEN
 if hit > 1 and hit <=7 and
				 GetSpriteVisible(hit)=0
 rem *** Show ring ***
 SetSpriteVisible(hit,1)
 rem *** Play sound effect ***
 PlaySound(1)
 rem *** Add 1 to differences found ***
 found = found + 1
 endif
 endif
 rem *** Update time so far ***
 timetaken = GetSeconds() - start
 SetTextString(1,Str(timetaken))
 Sync()
until found = 6 or presscount = 7

rem *** Delete existing sprites ***
for c = 1 to 7
 DeleteSprite(c)
next c
rem *** Delete sound ***
DeleteSound(ringsound)
rem *** Delete text ***
DeleteText(1)
rem *** Wait before showing next screen ***
Sleep(1000)
rem *** Reset aspect ratio ***
SetDisplayAspect(768.0/1024.0)
rem *** IF all differences found ***
if found = 6
	 rem *** Show End screen... ***
	 CreateSprite(1,finish)
	 SetSpriteSize(1,100,100)
	 rem *** ...and total time taken ***
	 CreateText(1,Str(timetaken))
	 SetTextColor(1,0,0,0,255)
	 SetTextPosition(1,36,31)
else
	 rem *** Show Fail screen... ***
	 CreateSprite(1,fail)
	 SetSpriteSize(1,100,100)
endif
Sync()
rem *** ... with button... ***
CreateSprite(2,button)
SetSpriteSize(2,15,-1)
SetSpritePosition(2,80,90)

rem *** Allow for Credits button press ***
do
 pressed = GetPointerPressed()
 if pressed = 1
 x = GetPointerX()
 y = GetPointerY()
 hit = GetSpriteHit(x,y)
 rem *** IF Credit button pressed THEN ***
 if hit = 2
 rem *** Show credits for 5 secs ***
 CreateSprite(3,credits)
 SetSpriteSize(3,100,100)
 SetSpriteDepth(3,8)
 Sync()
 Sleep(5000)
 rem *** Remove Credits screen ***
 DeleteSprite(3)
 endif
 endif
 Sync()
loop

190� Hands On AGK BASIC: Spot the Difference Game

Hands On AGK BASIC : User Defined Functions� 191

User-Defined Functions

In this Chapter:

T Creating Functions

T gosub and return Statements

T Mini-Specs

T Modular Programming Concepts

T Parameter Passing

T Return Values

T Pre-Conditions

192� Hands On AGK BASIC: User-Defined Functions

Functions

Introduction
Look at the computer in front of you. Notice how it is made up of several separate
components: keyboard, screen, mouse, and inside the main casing are other discreet
pieces such as the hard disk and CDROM.

Why are computers made this way, as a collection of separate pieces rather than
having everything encased in a single frame?

Well, there are several reasons. Firstly, by using separate components, each can be
designed to perform just one specific task such as: get information from the user (the
keyboard); display information (the screen); store information (the disk) etc. This
allows all of these items to be made and tested separately.

Also, if a component breaks down or needs to be replaced, you simply have to unplug
that component and replace it with a new one.

Why is all of this relevant to creating games programs? Years of experience have
shown that the advantages of this modular approach to construction doesn’t just
apply to physical items such as computers, it also applies to software.

Rather than create a program which consists of one continuous set of instructions, we
can split the program into several routines (also known as modules, functions or
subroutines). Each routine is designed to perform just one specific function. This
approach is particularly important in long programs and when several programmers
are involved in creating the software.

In fact, routines in AGK BASIC are usually referred to as functions, and that’s the
term we’ll use from here on in.

Functions
Designing a Function

The first stage in creating a function is to decide what task the function has to perform.
For example, we might want a function to do something as simple as display a line
of asterisks or move a sprite about the screen.

A good function will perform only a single task and be relatively short - perhaps no
more than 20 to 30 lines of code (often much less).

When a team of people is involved in creating the software, it is important that the
exact purpose of each function is written out in detail so there can be no misconceptions
between the people designing the routine and those programming it.

Functions must also be given a name. This name should reflect the purpose of the
function and often starts with a verb, since functions perform tasks.

So let’s have a first attempt at writing out a design for a function that is to draw a line
of asterisks.

Hands On AGK BASIC: User-Defined Functions� 193

This function document is known as a mini-spec and, although it does not yet show
all the features that will appear in a full mini-spec, it contains all the details we need
to create our simple function. The only tricky part is to write a description that is
unambiguous - something that is not always that easy! Notice the word horizontal
has been included so that there is no possibility of the programmer deciding to create
a function that produces a vertical line of asterisks.

Coding a Function

From the mini-spec we get the name and purpose of the function. From that we can
create the following code:

	function DrawLine()
		 Print(“**********”)
	endfunction

Notice that the module begins with the keyword function and ends with the keyword
endfunction.

The first line also contains the name of the function, DrawLine, and an empty set of
parentheses.

Between the first and last lines go the set of instructions that perform the task the
function has been designed to do. In this case, only one line of code is needed.

Calling a Function

The code within a function will only be executed if that function is called. To call a
function, a program need only specify the function’s name and the empty parentheses:

DrawLine()

This is a request for the code within the named function to be executed.

The Final Code

The complete program will now contain two sections. One section will contain the
code for the function and the other section the main logic of the program.

The function code must be placed after the end of the main logic.

This gives us the code shown in FIG-8.1.

Activity 8.1

List any other details that might be added to the description to make the
requirements more exact.

FUNCTION NAME	 :	 DrawLine

DESCRIPTION		 :	 Draws a horizontal line of 10 asterisks.

194� Hands On AGK BASIC: User-Defined Functions

Notice that the end statement has been added to emphasise the end of the main
program logic.

 How the Code is Executed

When a call is made to a function, control transfers to that function, its code is
executed, and then control returns to the line immediately following the original call
to the function. FIG-8.2 shows the stages involved during the execution of the
program shown above.

FIG-8.1

Using a Function

rem *** main program ***

DrawLine()
Sync()
do
loop
end

rem *** Draw a line function ***
function DrawLine()
 Print(“**********”)
endfunction

Activity 8.2

Start a new project called UsingFunctions. Modify main.agc to match the code
given in FIG-8.1. Test and save your project.

The two sections that make up the
program are represented here as
two rectangles.

Execution begins in the main program
code where the call to DrawLine()
is reached.

This causes control to jump to the
DrawLine() function.

The code within DrawLine() is
then executed...

main DrawLine main DrawLine

DrawLine()

main DrawLine

DrawLine()

main DrawLine

DrawLine()

Code
within function

executed

Control
jumps to called

function

Execution
reaches the call
to DrawLine()

Print(”**********”)

FIG-8.2

The Function Calling
Mechanism

Hands On AGK BASIC: User-Defined Functions� 195

A function can be called as often as required from any point in the main program
logic.

So, if we wanted to draw two lines of asterisks, we would change the code for the
main section to

DrawLine()
DrawLine()
Sync()
do
loop
end

which adds a second call to the function.

Local Variables

We are at liberty to use variables within a function. The variables used within a
function are local to that function and hence are known as local variables. When a
variable is local to a function, it is allocated space within the computer’s memory
only while that function is being executed. Once execution finishes, the allocated
memory space is freed up and the variable no longer exists.

Because a variable is local to a function, that means that we may use a variable within
a function that has the same name as a variable in the main program logic without
causing an error. The program will treat the two variables as separate entities. The
program in FIG-8.3 demonstrates this use of a local variable sharing a name with a
variable in the main part of the program.

The variable v in the main program is assigned the value 3 while v within the function
is assigned the value 6. The Print statement within the function will display the
value held in the local variable (6) while the Print statement in the main section will

Activity 8.3

Modify UsingFunctions so that two calls are made to DrawLine() as in the
code shown above.

Test your program to check that two lines of asterisks are drawn. Resave your
project.

Now control returns to the line in the
main program immediately following
the call to DrawLine().

Any remaining lines in the main
program are executed.

main DrawLine

Control
returns to the
main program

main DrawLine

Remaining
lines executed

DrawLine()
Sync()
do
loop

DrawLine()
Sync()
do
loop

Print(”**********”) Print(”**********”)

FIG-8.2
(continued)

The Function Calling
Mechanism

196� Hands On AGK BASIC: User-Defined Functions

print 3 - the value in the other variable named v.

Alternative Coding

As long as a function performs the task described within the mini-spec, then exactly
how that result is achieved is up to the programmer. Back on the first page of Chapter
1 we saw that there is usually more than one algorithm for achieving a required result
(the 4 litre problem). So let us look at another way of creating a line of 10 asterisks:

	function DrawLine()
		 for c = 1 to 10
			 PrintC(“*”)
		 next c
		 Print(“ “) //New line
	endfunction

If we take a moment to look at the code above, we can see that the for loop will print
the 10 asterisks - one at a time - and the final Print()statement will move the cursor
onto a new line.

Parameters
Sometimes a device needs to be supplied with information before it can perform its
function. For example, you need to press a button on your TV remote to specify
which channel you want to view. This same principle also holds for software
functions: most functions need to be supplied with one or more values in order to
determine exactly what is required of it. These values are known as parameters.

FIG-8.3

Using Local Variables

rem *** Variable v in the main program ***
v = 3
Test()
Print(v)
Sync()
do
loop
end

function Test()
	 rem *** Variable v local to the function ***
 v = 6
 Print(v)
endfunction

Activity 8.4

Create a new project called LocalVariable and change main.agc to contain the
code shown in FIG-8.3.

Run the program and verify that each variable contains a different value.

Activity 8.5

Modify UsingFunctions, replacing the existing code for DrawLine() with the
new code given above.

Check that exactly the same results are produced as before. Resave your
project.

Hands On AGK BASIC: User-Defined Functions� 197

If we wanted to allow the length of the line created by DrawLine() to be specified
when the function is called, we need to pass that information to the function in the
form of a parameter.

To pass a parameter to a function, we need to rewrite the description of that function
adding parameter details such as the parameter name and its type. In the case of the
DrawLine() function, the new mini-spec would be:

Notice that the parameter is described as an in parameter. This description is used
because the value is being “given” to the function.

From our updated description we create the new code:

	function DrawLine(ilength)
		 for c = 1 to ilength
			 PrintC(“*”)
		 next c
		 Print(“ “)
	endfunction

Notice that the parameter is placed within the parentheses of the first line of the
function and that the parameter is then used as the end value in the for statement so
that the loop now iterates ilength times.

And finally, the call made to the function from the main section of the program must
supply a value for the parameter:

	DrawLine(8)

This value will be copied into the function’s formal parameter, ilength, just before the
code of the function is executed.

The actual parameter passed to a function can be given as a constant (as in the
example above), a variable or an expression. Hence, if we start by storing a number
in a variable

	num = Random(1,20)

we can pass the value held in that variable as the parameter to our function with the
line

	DrawLine(num)

FUNCTION NAME	 :	 DrawLine
PARAMETERS
	 In					 :	 ilength : integer

DESCRIPTION		 :	 Draws a horizontal line of ilength asterisks

The parameter given in
the function’s code is
known as the formal
parameter.

The parameter specified
when the function is
called is known as the
actual parameter.

Activity 8.6

In UsingFunctions, modify DrawLine() to match the code given above.

Change the calls to DrawLine() so that a line of 5 asterisks followed by a line
of 12 asterisks is displayed. Test and save your project.

198� Hands On AGK BASIC: User-Defined Functions

or we can include a calculation within the function call

	DrawLine(num * 2)

and the result of that calculation will be passed as the parameter value.

A final option is to use the value returned by one function as the parameter for another
as in the line:

	DrawLine(Random(1,10))

which will generate a random number in the range 1 to 10 and then use that value as
the parameter to DrawLine().

FIG-8.4 shows what’s happening when a parameter is passed to a function.

FIG-8.4

How Parameter Passing
Works

When the function is called, any local
variables in that function and any
parameters are assigned memory
space.

The value specified in the function
call is then copied to the parameter
variable...

...and the function’s code executed. When the end of the function is
reached, any local variables and
parameters have their space
deallocated.

function DrawLine(ilength)
 for c = 1 to ilength
 Print(“*”)
 next c
 PrintC(” “)
endfunction

cilength

Parameter
and local variables
 allocated space

function DrawLine(ilength)
 for c = 1 to ilength
 Print(“*”)
 next c
 PrintC(” “)
endfunction

cilength

8 ?

Local
variables
deleted

function DrawLine(ilength)
 for c = 1 to ilength
 Print(“*”)
 next c
 PrintC(” “)
endfunction

DrawLine(8) cilength

8

cilength

function DrawLine(ilength)
 for c = 1 to ilength
 Print(“*”)
 next c
 PrintC(” “)
endfunction

c
changes value as

code executes

8 ?

Activity 8.7

Modify UsingFunctions so that the main program generates a random number in
the range 1 to 10, storing the result in a variable, num.

Change the parameters given in the calls to DrawLine() so that the first call uses
num as the parameter and the second call uses num*3 -2 as the parameter.

Test and save your project.

Hands On AGK BASIC: User-Defined Functions� 199

Multiple Parameters

A function can have as many parameters as required and these parameters can be of
any type: integer, real or string.

To demonstrate this, we’ll write yet another version of the DrawLine() function in
which the character used to construct the line is also passed as a parameter. Of course,
we start by updating the mini-spec:

From this we can create the modified function:

	function DrawLine (ilength, schar$)
		 for c = l to ilength
			 PrintC(schar$)
		 next c
		 Print(“ “)
 	endfunction

Notice that parameters are separated from each other by commas. The second
parameter’s name differs slightly from that in the mini-spec because of AGK BASIC’s
requirement that string variables must end with a dollar symbol ($).

Now we need to supply two values when we call the function; one for the length of
the line, the other for the character to be used in the construction of the line. A typical
call would be:

	DrawLine (12, “=”)

which would assign the value 12 to the parameter ilength and the string “=” to schar$
and thereby produce a line on the screen created from twelve = symbols.

It’s important that you put the values in the correct order when you call up a function.
For example, the line

	DrawLine (“=” ,12)

would be invalid since the function expects the first value given in the parentheses to
be an integer.

FUNCTION NAME	 :	 DrawLine
PARAMETERS
	 In					 :	 ilength 	 : integer
						 :	 schar		 : string

DESCRIPTION		 :	 Draws a horizontal line of ilength characters. The
							 character used in the construction of the line is
							 schar.

The $ symbol is
omitted from the
parameter name
since this is a BASIC
requirement and not
part of the design.

Activity 8.8

Modify your DrawLine() function so that the character used can be passed as a
parameter.

Change the main section of the code so that a single line of 10 # characters is
drawn.

200� Hands On AGK BASIC: User-Defined Functions

Pre-conditions

When a function uses a parameter, we will often need to restrict the range of values
which may sensibly be assigned to that parameter. For example, when we specify
what length of line we want DrawLine() to produce, it doesn’t make sense to pass a
negative value to the function. Equally, it makes little sense to request a line hundreds
of characters long, since there is a limit to how many characters can fit on a single
line of the app window. We might therefore expect the value specified for ilength to
be in a range such as 1 to 100.

When we place limitations on the conditions under which a function can operate
successfully, these limitations are known as the pre-conditions of the function.

We can therefore state that the pre-condition for DrawLine() is that the parameter
ilength lies between 1 and 100.

We would start by adding this restriction to the mini-spec:

Now we need some way of enforcing this limit. We do this by adding an if statement
at the beginning of the DrawLine() function which causes that function to be aborted
if the value of ilength is outside the acceptable range.

exitfunction

The exitfunction statement is designed to be placed within a function. When
executed, this statement causes the remaining statements in the function to be ignored,
ending execution of the routine and returning to the code which called the function
in the first place.

We can make use of this statement to terminate execution of a function when its
parameter(s) fall outside an acceptable range. In the case of DrawLine(), we would
add the following lines right at the start of the routine to check the value of ilength:

	rem *** if ilength outside 1 to 100, terminate function ***
	if ilength < 1 or ilength > 100
		 exitfunction
	endif

FUNCTION NAME	 :	 DrawLine
PARAMETERS
	 In					 :	 ilength 	 : integer
							 schar		 : string

PRE-CONDITION	 :	 1 <= ilength <= 100

DESCRIPTION		 :	 Draws a horizontal line of ilength characters. The
							 character used in the construction of the line is
							 schar.

Activity 8.9

Modify your DrawLine() function so that if ilength is outside the range 1 to
100, the function terminates without anything being drawn.

Check that the new code works by attempting to draw a line 101 characters
long constructed from the + symbol.

Hands On AGK BASIC: User-Defined Functions� 201

About Pre-Conditions

Be careful when choosing the pre-condition for a function. A pre-condition should
only prevent situations which the function itself cannot handle. Do not create a pre-
condition simply because you feel that using a value outside a range seems
unreasonable to you. If the function’s code can handle the situation then allow that
situation to occur.

For example, we have stated in the pre-condition of DrawLine() that ilength must be
in the range 1 to 100. But could the code handle values outside that range? The
answer to this question is - yes.

Values of zero or less will simply mean that the for loop will iterate zero times and
so the only output will be that caused by the Print(“ “) statement which will move
subsequent output onto the next line on the screen. Values greater than 100, the
characters produced may spread over several lines, but the function will still work as
described.

So we were probably mistaken to impose a pre-condition on DrawLine().

When a function has no restrictions we would describe the pre-condition within the
mini-spec as:

									 PRE-CONDITION	 :	 None

Return Types

Not only can we supply values to a function (in the form of parameters), but some
functions also return results.

For example, let’s assume we wish to create a function called SumIntegers() which
takes an integer parameter, ival, and returns the sum of all the integer values between
1 and ival.

When describing such a routine in a mini-spec, we add the returning value as an out
parameter.

To return a value from an AGK BASIC function we add the value to be returned
immediately after the term endfunction. So SumIntegers() would be coded as:

	function SumIntegers(ival)
		 iresult = 0
		 for c = 1 to ival
			 iresult = iresult + c
		 next c
	endfunction iresult

FUNCTION NAME	 :	 SumIntegers
PARAMETERS
	 In					 :	 ival 		 : integer
	 Out				 :	 iresult		 : integer

PRE-CONDITION	 :	 None

DESCRIPTION		 :	 Sets iresult to the sum of the integers between 1
							 and ival.

202� Hands On AGK BASIC: User-Defined Functions

When calling a function that returns a value, that value can be assigned to a variable,
displayed, or used in an expression. Examples of valid calls to SumIntegers() are
given below:

	sum = SumIntegers(10)
	Print(SumIntegers(5))
	answer = SumIntegers(9)/3
	if SumIntegers(no) < 100

Functions can also return a string value. For example, the function FillString(ch$,
num) returns a string containing num copies of ch$:

function FillString(ch$,num)
 sresult$ = “”
 for c = 1 to num
 sresult$ = sresult$ + ch$
 next c
endfunction sresult$	

and might be called with a line such as

	h$ = FillString(“H”,10)

which would place a string containing 10 H’s in the variable h$.

Return Values and Pre-Conditions

Routines such as SumIntegers() and Factorial() cannot successfully return a result
for all integer values, since the space assigned to a variable is of a fixed size so there
would be insufficient space to hold the result produced by SumIntegers(100) or
Factorial(16). For this reason we need to impose a pre-condition in each case limiting
the value of the In parameter.

Activity 8.10

Create a project called TestFact which contains a function named Factorial
which implements the following mini-spec:

The main program should generate a random number between 1 and 10,
display that number, then display the result of Factorial() using the generated
value as the In parameter.

Test and save your project.

FUNCTION NAME	 :	 Factorial
PARAMETERS
	 In					 :	 ival 		 : integer
	 Out				 :	 iresult		 : integer

PRE-CONDITION	 :	 None

DESCRIPTION		 :	 Sets result to the product of the integers
							 between 1 and ival. For example, if ival is 5 then
							 iresult would be the value of 1 x 2 x 3 x 4 x 5.

Hands On AGK BASIC: User-Defined Functions� 203

Of course, this is easily done in the mini-spec. We could add the line

								 PRE-CONDITION	 :	 ival <= 50

in SumIntegers

and

								 PRE-CONDITION	 :	 1 <= ival <= 15

in Factorial.

The problem arises when we attempt to implement these restrictions in the code of
the functions. We might be tempted to start SumIntegers() with the lines

	if ival > 50
		 exitfunction

but because SumIntegers() is designed to return a value, it is not legal to exit that
function without returning a value.

This means that the exitfunction statement, as shown above, is not valid since it
attempts to exit the function without returning a value. Luckily, the statement’s
format allows for a value to be specified after the keyword exitfunction and this
value is returned by the function.

But that just leaves us with another problem - what value should we return when the
routine does not meet its pre-conditions? We can return any value we like, but usually
this is handled by returning a special value which cannot occur when the function’s
pre-conditions are met. For example, here we could return the value -1, since it is an
impossible result to achieve when ival is less than 50. We would do this with the line:

	exitfunction -1

This allows us to add back the pre-condition to our routine, the final version of the
code being:

	function SumIntegers(ival)
		 rem *** Exit with -1 if pre-condition ***
		 rem *** not met ***
		 if ival > 50
			 exitfunction -1
		 endif

		 iresult = 0
		 for c = 1 to ival
			 iresult = iresult + c
		 next c
	endfunction iresult

Activity 8.11

Modify your Factorial() function from the last Activity so that it implements
the pre-condition that ival must lie between 1 and 15. The function should
return zero if the parameter is outside this range.

Test the update by calling the function with the parameter value set to 16.
Resave your project.

204� Hands On AGK BASIC: User-Defined Functions

When a function such as SumIntegers() (which returns a dummy result if its pre-
condition has not been met) is called, the main program must check that the function
has performed correctly. This is done by making the main program check the value
returned by the function. A typical piece of code for doing this is:

	result = SumIntegers(number)
	if result = -1
		 Print(“Could not calculate result”)
	else
		 Print(result)
	endif

Returning a string from a function is no more difficult than returning a numeric value.

The program in FIG-8.5 contains a function which returns a random-length string of
random letters.

The parameter
number is assumed
to be a variable that
has been assigned a
value earlier in the
program.

Activity 8.12

In TestFact, change the main program to generate a number between 10 and 20.
Attempt to find the factorial of the number generated, but if the number is
over 15, display the message “Factorial too high to calculate.” along with the
generated value.
Run your program so that at least one run produces the error message.

rem *** Generate string ***
text$ = RandomString()
rem *** Display string ***
Print(text$)
Sync()
do
loop

rem *** Generate a random-length string of random letters ***
function RandomString()
 rem *** Generate length for string ***
 size = Random(1,50)
 rem *** start with empty string ***
 sresult$ =””
 rem *** FOR size times ***
 for c = 1 to size
 rem *** Add new character to end of string ***
 sresult$ = sresult$ + Chr(Random(65,90))
 next c
 rem *** return the string generated ***
endfunction sresult$

FIG-8.5

Random Length String
Function

Activity 8.13

Create a mini-spec for the function RandomString() given in FIG-8.5.

Create a new project called StringFunction. Edit main.agc to match the code
given in FIG-8.5.

Test and save the project.

This code makes use of
an AGK function called
Chr() which returns the
character whose ASCII
code matches the value
of the parameter. More
about this function in
the next chapter.

Hands On AGK BASIC: User-Defined Functions� 205

Function Flexibility

The more flexible a function, the more useful it is. For example, the final version of
DrawLine() is much more flexible than the first, since it allows the length and
construction character of the line to be specified when the function is called, whereas
the first version could create only a line of exactly ten asterisks. With this added
flexibility we could use the function to draw a simple bar chart for example -
something not possible with the original version of the routine.

So, wherever possible, you should always try to add the maximum flexibility to any
routine you create as long as this does not lead to over-complex code or unacceptable
execution times.

We will add some flexibility to our RandomString() function with a new mini-spec:

Notice that the mini-spec’s description makes use of structured English this time. A
description can be written in any way you please; the only requirement is that it must
be complete and unambiguous. A mini-spec is the document used by the programmer
as a statement of exactly what a function must do, so that document must contain all
the details required.

Statement Formats

We’ve introduced three new function-related statements in this section; the format of
these are given in FIG-8.6.

ËË Although a mini-spec
may have a description
written in structured
English, this does not
mean that the program
must employ that logic to
implement the routine.

FUNCTION NAME	 :	 RandomString
PARAMETERS
	 In					 :	 ilength	 : integer
	 Out				 :	 sresult	 : string
	
PRE-CONDITION	 :	 ilength = -1 or 1 <= ilength <= 50

DESCRIPTION		 :	 IF ilength = -1 THEN
								 sresult is a string of random capital letters of a
								 random length between 1 and 50
							 ELSE
								 sresult is a string of random capital letters
								 exactly ilength characters long
							 ENDIF	

Activity 8.14

Modify the code for RandomString() in your StringFunction project so that it
matches the mini-spec requirements given above. If ilength is not within the
specified range, an empty string should be returned.

Test and save the project.

FIG-8.6

function
exitfunction
endfunction

exitfunction value[]

endfunction value[]

function parameter[]name ()

,

206� Hands On AGK BASIC: User-Defined Functions

where:

	 name 		 is the name of the function. The name chosen must conform to
 			 the same rules used when creating variable names.

	 parameter 	 is the name of any value passed to the function.	 Names should
			 be appropriate for the nature of the value being passed.

	 value		 is the value returned by the function. This can be 	specified
			 using a variable, constant or expression.

Summary
±	A function is a named section of code.

±	Functions should be relatively short and perform only a single task.

±	Functions in AGK BASIC begin with the term function and end with the term
endfunction.

±	A function must be given a unique name.

±	A function name should reflect the purpose of the function and must conform
to the same rules as a variable name.

±	A function can include zero or more in parameters.

± The parameter(s) listed in a function’s code are known as the formal
parameters.

±	A function can return a single value.

±	Any variables used within a function are local to that function.

±	Local variables may have the same name as variables in the main program
without causing an error.

±	Before being coded, the details of a function should be documented in a mini-
spec.

±	Where a parameter’s value must fall within a given range, this should be stated
as a pre-condition in a function’s mini-spec.

±	Any pre-condition is tested by an if statement at the start of the function.

±	When a pre-condition is not fulfilled, a function should exit without executing
the main part of its code.

±	Exiting a function before all of its code has been executed is achieved using
the exitfunction statement.

±	Where a pre-condition is not met and the function is designed to return a value,
some error-indicating value should be returned.

±	A function is called by giving the function name, parentheses and, where
required, a list of parameter values.

±	The parameters given when calling a function are known as the actual
parameters.

±	The value returned by a function can be assigned to a variable, displayed, used
in an expression or used as the parameter to another function call.

Hands On AGK BASIC: User-Defined Functions� 207

 BASIC Subroutines

Introduction
Using functions is the best way to create modular software in AGK BASIC, but the
language does offer another way to achieve a similar effect, and that is to use
subroutines. Although we’ve used the term subroutine earlier to mean any modular
section of code, in AGK BASIC the word has a more specific meaning as we’ll see
below.

Creating a Subroutine
The original version of the BASIC language (invented in 1964) had no provision for
true functions as described earlier in this chapter. Instead it made use of two
statements, gosub and return which allowed a section of code to be executed and
then a return made to the point of call. In this respect it was similar to a true function,
but there was no way to pass parameter values or make use of local variables.

Although of limited usefulness, the gosub and return statements have been retained
in AGK BASIC and so a description of how these statements are used is included
here.

In order to compare true functions with the subroutine approach of gosub, we will
recode the DrawLine routine using this older approach.

The start of a subroutine is marked with a label giving the name of the subroutine.
This will be the name given in the mini-spec.

A label is just a valid name followed by a colon, for example:

	DrawLine:

This is followed by the code

DrawLine:
		 for c = 1 to 10
			 Print(“*”)
		 next c
		 Print(“ “)

and finally, the return statement:

DrawLine:
		 for c = 1 to 10
			 Print(“*”)
		 next c
		 Print(“ “)
		 return

To execute the code, we use the gosub statement giving the name of the label we used
to start the code:

	gosub DrawLine

A complete program implementing this example is shown in FIG-8.7.

208� Hands On AGK BASIC: User-Defined Functions

It is perhaps worth pointing out that no modern language offers this simplistic method
of implementing modular programming because of the restrictions it imposes.
Although you may see some examples of the gosub statement in action, these will be
in very simple programs. So...

	 avoid using gosub - stick to proper functions!

FIG-8.7

Using Subroutines

rem *** Using GOSUB ***
gosub DrawLine
Sync()
do
loop
end

DrawLine:
 for c = 1 to 10
 PrintC(“*”)
 next c
 Print(“ “)
 return

Activity 8.15

Start a new project called TestGosub.

Edit main.agc to match the code in FIG-8.7.

Test and save your project.

Hands On AGK BASIC: User-Defined Functions� 209

A Library of Functions

Introduction
Most functions will be designed for a specific project and will only ever be used in
that project, but a more general-purpose routine can be re-used in different programs.

We have already experienced this when we used the three Button functions back in
earlier chapters to allow us to enter integer values.

Creating a Library
If we identify one or more routines that might be useful later, then we need to copy
these routines into a new agc file which contains nothing but the code for these
selected functions.

If you are building a library of reusable routines, the best approach is to create a
separate agc file for each category. For example, we might keep all the math functions
in one file and all the string-handling functions in another. Other functions which fall
into an existing category can be added to the appropriate file later.

FIG-8.8 shows you how to place the RandomString() function in a separate file.

FIG-8.8

Creating a Library Although the new Library file will be independant of any project, when it is first

created it will be in the same folder as the function being transferred.
To add the new file, select File|New|Empty file from the main menu.

After requesting a new file we need to
confirm that it is to be added to the
current project.

Next we have to give the file a name.
In this case, it has been called
StringLibrary to remind us of its content
and purpose.

Select

Select
name: StringLibrary

210� Hands On AGK BASIC: User-Defined Functions

Since the point of creating this library file is to make use of the functions it contains
in other projects, it makes sense to remove the file from the current project’s folder
and store it in a more generalised one (see FIG-8.9).

FIG-8.8
(continued)

Creating a Library

FIG-8.9

Moving the Library File

The new file is now listed in the
Projects Panel and has been assigned
a tabbed page in the edit window.

Now we copy and paste the function’s
code to the new file before selecting the
File|Save Everything from the main
menu.

New
file added

New
tabbed page

Function’s
code copied to

new file

From Windows Explorer we need to
create a folder for our library. Within
the HandsOnAGK directory we create
a new folder named Library.

Now we can copy the StringLibrary file
from the StringFunctions project folder
to our new Library folder.

StringLibrary.agc

Copy

Activity 8.16

Open your StringFunction project.

Create a new file called StringLibrary.

Copy the code for the function RandomString() from main.agc into the new
file.

Save all the files within the project then close the project.

Open Windows Explorer and create a new subfolder called Library within the
HandsOnAGK folder.

Copy the file StringLibrary from the StringFunction folder to the Library
folder.

Hands On AGK BASIC: User-Defined Functions� 211

Creating Modular Software

Introduction
Now that we know the basic techniques required to design and implement functions
in AGK BASIC, we’re ready to rewrite the SpotTheDifference project using functions.
We’ll start by repeating the structured English description of the game:

	 1	 Load resources
	 2	 Set up game screen
	 3	 Play game
	 4	 End game

This is a good guide for identifying the routines needed within the program. The
mini-spec for each identified routine is shown below.

FUNCTION NAME	 :	 LoadResources
PARAMETERS
	 In					 :	 None
	
PRE-CONDITION	 :	 None

DESCRIPTION		 :	 The images
								 Button.bmp, Credits.jpg, End.jpg
								 Main.jpg, Ring.png, Fail.jpg
							 sound file
								 Click.wav
							 and music file
								 Backgroundmusic.wav
							 are loaded and assigned ID numbers.

FUNCTION NAME	 :	 SetUpGameScreen
PARAMETERS
	 In					 :	 None
	
PRE-CONDITION	 :	 None

DESCRIPTION		 :	 Start music playing.
							 The image main.jpg is displayed. The rings are
							 positioned at each difference in the right-hand
							 picture and then hidden.

FUNCTION NAME	 :	 PlayGame
PARAMETERS
	 In					 :	 None
	 Out				 :	 timetaken : integer

PRE-CONDITION	 :	 None

DESCRIPTION		 :	 The user selects areas within the right-hand
							 picture. If the area is within a hidden ring, the ring
							 is displayed. The game ends when all six rings
							 are displayed or when 7 areas have been selected.
							 All resources used by this routine are deleted when
							 play is complete. The routine returns the number 		
							 of seconds taken to complete the game.

212� Hands On AGK BASIC: User-Defined Functions

Now we’re ready to start turning our design into a program.

There are various ways to tackle this. If we had several people working on the
program, we could give each a separate routine to work on at the same time. It would
then just be a matter of bringing together the separate routines to give us the final
program. On the other hand, if only one person is working on the coding, the routines
are coded one after another, usually starting with the main logic.

Top-Down Programming
When we code our routines one at a time, starting with the main logic, this is known
as top-down programming. The name is used because we start with the main part
of the program (the top) and then work our way through the routines called by that
main part. We’ll see how it’s done below.

Step 1

We start by turning the outline logic given in the structured English into AGK BASIC
code. An important point to note is that the program code must match that logic
exactly. If we find we have to deviate from this logic, then we must go back and
modify the details given in the structured English.

Actually, the code for the main section of the program becomes little more than a set
of calls to the other routines:

	 LoadResources()
	 SetUpGameScreen()
	 time = PlayGame()
	 EndGame(time)

Notice that the main code really doesn’t do any of the detailed work, it leaves that to
the routines. The main section only has to call up each of the routines in the correct
order and save any values returned by one function to pass it on to another function.

Activity 8.17

Start a new project called SpotTheDifference2.

Compile the default code and copy the required files into the media folder.
Modify main.agc so that it contains the four lines given above.

Edit startup.agc setting width to 1024 and height to 768.

FUNCTION NAME	 :	 EndGame
PARAMETERS
	 In					 :	 timetaken : integer
	
PRE-CONDITION	 :	 None

DESCRIPTION		 :	 Sets the aspect ratio to portrait mode.
							 If the player has selected all six differences, then
							 the End screen is displayed along with the time
							 taken to find all the differences. If all differences
							 were not found, the Fail screen is displayed.
							 Both screens have a button which when pressed
							 displays the Credits screen for 5 seconds before
							 returning to the previous screen.

Hands On AGK BASIC: User-Defined Functions� 213

Step 2

To get the main logic to run, we must write code for the routines that are called. And
yet, if we do that, it would appear that the whole program will need to be completed
before the program can be executed for the first time.

The way round this problem is to write almost empty routines with the required
names as shown below:

	function LoadResources
		 Print(“LoadResources”)
	endfunction

	function SetUpGameScreen()
		 Print(“SetUpGameScreen”)
	endfunction

	function PlayGame()
		 Print(“PlayGame”)
	endfunction 10

	function EndGame(timetaken)
		 Print(“EndGame”)
	endfunction

Take a moment to look at this code. Each function displays its own name, takes any
necessary parameters and returns a value where necessary. We need to make sure that
the names, parameter names and return types match with those given in the mini-
specs.

These empty routines are known as test stubs and are written so that we can test the
main logic without having the final code for any of the routines which that logic has
to call.

By running the program, we can see that the functions are executed in the correct
order.

Step 3

Now we can begin to remove the stubs in our project and replace them with the final
version of each routine. As each new routine is added the program is tested to make
sure that the new routine, and the program as a whole, are working correctly.

The code for the first routine, LoadResources(), is given below:

Activity 8.18

In SpotTheDifference2, add an end statement after the existing four lines of
code. This will separate the main logic from the code for the functions.

Add the four test stubs given above to your program.

Add a Sync() statement and do..loop structure immediately before end so that
the messages displayed by the function will appear on the screen.

Run and save your program.

214� Hands On AGK BASIC: User-Defined Functions

rem *** Load resources ***
function LoadResources()
		 rem *** Load images ***
		 main = 		 LoadImage(“Main.jpg”)
		 finish = 		 LoadImage(“End.jpg”)
		 credits = 	 LoadImage(“Credits.jpg”)
		 ring = 		 LoadImage(“Ring.png”,0)
		 button = 	 LoadImage(“Button.bmp”,1)
		 fail = 		 LoadImage(“Fail.jpg”)
		 rem *** Load sounds ***
		 ringsound = LoadSound(“Click.wav”)
		 rem *** Load music ***
		 backgroundmusic = LoadMusic(“Background.wav”)
endfunction

The second routine, SetUpGameScreen(), is coded as:

rem *** Set up main section of the game ***
function SetUpGameScreen()
		 rem *** Play music ***
		 PlayMusic(backgroundmusic)
		 rem *** Show main screen ***
		 CreateSprite(1,main)
		 SetSpriteSize(1,100,100)
		 rem *** Load rings at image differences ***
		 CreateSprite(2,ring)
		 SetSpriteSize(2,-1,10)
		 SetSpritePosition(2,91,86)
		 CloneSprite(3,2)
		 SetSpritePosition(3,51.5,22)
		 CloneSprite(4,2)
		 SetSpritePosition(4,49,68)
		 CloneSprite(5,2)
		 SetSpritePosition(5,73,66)
		 CloneSprite(6,2)
		 SetSpritePosition(6,88.5,66)
		 CloneSprite(7,2)
		 SetSpritePosition(7,55.75,62.5)
		 rem *** Hide rings ***
		 for c = 2 to 7
 		 SetSpriteDepth(c,9)
 		 SetSpriteVisible(c,0)
		 next c
		 rem *** Update screen ***
		 Sync()
	endfunction

Activity 8.19

Remove the LoadResources() test stub from your program and substitute the
complete function as shown above.

Run the program again. Although no new output is produced, there will be an
error message if any of the files cannot be found. Save your project.

Activity 8.20

Add the complete version of SetUpGameScreen() to your project.

Run the program again. What problem occurs? Save your project.

Hands On AGK BASIC: User-Defined Functions� 215

Global Variables

The problem with SetUpGameScreen() is that it needs to make use of the IDs which
were assigned to various resources by the LoadResources() function.

The LoadResources() function assigned the resource IDs to variables such as
backgroundmusic, main and ring. But these variables are local to that routine, so
when we mention variables of the same name in SetUpGameScreen() the program
doesn’t realise that we are trying to refer to the same variables as those in the earlier
routine. Instead, we get a new set of variables that are local to SetUpGameScreen()
and these new variables do not contain the values we need.

If only one value had been needed to be shared between the routines, we might have
made use of a return value from the first routine and a parameter to the second (note
that this is exactly how the timetaken is passed between PlayGame() and EndGame()).

However, since so many ID values need to be shared between LoadResources() and
the other routines, we have no choice but to store these values in global variables.

Global variables are exactly the opposite from local variables. Whereas local
variables exist only within the routine in which they are used, global variables exist
throughout the program and can be referred to anywhere within the program.

To declare a global variable, we need to start with the keyword global and then give
the variable name. In this program, we want the variables that contain the IDs of the
various resources to be global - that way we can refer to them in any of the functions.
So the code needed is:

rem *** Define global variables ***
rem *** IDs for images ***
global main, finish, credits, ring, button, fail
rem *** IDs for sound ***
global ringsound
rem *** IDs for music ***
global backgroundmusic

This code is placed right at the start of the main logic, before the function calls.

Now the term main in LoadResources() and main in SetUpGameScreen() refer to the
same global variable.

The third function, PlayGame() is coded as:

rem *** Play game ***
function PlayGame()
		 rem *** Start timer ***
		 start = GetSeconds()
		 CreateText(1,str(timetaken))
		 SetTextColor(1,0,0,0,255)
		 SetTextPosition(1,88,6)
		 rem *** Set count of differences found ***

Activity 8.21

Add the global declarations to your code and run the program again.

Does the program run correctly this time? Save your project.

216� Hands On AGK BASIC: User-Defined Functions

		 found = 0
		 rem *** Number of clicks so far is zero ***
		 rem *** Get user clicks until all 6 differences found ***
		 repeat
			 rem *** Check for clicked(pressed)
 	 pressed = GetPointerPressed()
			 rem *** IF pressed, ***
 	 if pressed = 1
			 	 rem *** Add 1 to clicks ***
			 	 inc presscount
			 	 rem *** Check for sprite hit ***
 	 x = GetPointerX()
 	 y = GetPointerY()
 	 hit = GetSpriteHit(x,y)
 	 rem *** IF clicked over hidden ring THEN
 	 if hit > 1 and hit <=7 and GetSpriteVisible(hit)=0
 rem *** Show ring ***
 SetSpriteVisible(hit,1)
 rem *** Play sound effect ***
 PlaySound(ringsound)
 rem *** Add 1 to differences found ***
 found = found + 1
 	 endif
 		 endif
 		 rem *** Update time so far ***
 		 timetaken = GetSeconds() - start
 		 SetTextString(1,Str(timetaken))
 		 Sync()
		 until found = 6 or presscount = 7
		 rem *** Delete existing sprites ***
		 for c = 1 to 7
 		 DeleteSprite(c)
		 next c
		 rem *** Delete sound ***
		 DeleteSound(ringsound)
		 rem *** Delete text ***
		 DeleteText(1)
	endfunction timetaken

The final function, EndGame() is coded as:

rem *** Finish game ***
function EndGame(timetaken)
		 rem *** Wait before finishing ***
		 Sleep(1000)
		 rem *** Reset aspect ratio ***
		 SetDisplayAspect(768.0/1024.0)
		 rem *** IF all differences found ***
		 if found = 6
			 rem *** Show End screen... ***
		 	 CreateSprite(1,finish)
			 SetSpriteSize(1,100,100)
			 rem *** ...and total time taken ***
			 CreateText(1,str(timetaken))
			 SetTextColor(1,0,0,0,255)
			 SetTextPosition(1,36,31)

Activity 8.22

Add the third function to your project and check that it operates correctly.

Save your project.

Hands On AGK BASIC: User-Defined Functions� 217

			 Sync()
		 else
			 rem *** Show Fail screen... ***
			 CreateSprite(1,fail)
			 SetSpriteSize(1,100,100)
		 endif
		 rem *** ... with button... ***
		 CreateSprite(2,button)
		 SetSpriteSize(2,15,-1)
		 SetSpritePosition(2,80,90)
		 rem *** Allow for Credits button press ***
		 do
 		 pressed = GetPointerPressed()
 		 if pressed = 1
 	 x = GetPointerX()
 	 y = GetPointerY()
 	 hit = GetSpriteHit(x,y)
 	 rem *** IF Credit button pressed THEN ***
 	 if hit =2
 	rem *** Show credits for 5 secs ***
 	CreateSprite(3,credits)
 	SetSpriteSize(3,100,100)
 	SetSpriteDepth(3,8)
 	Sync()
 	Sleep(5000)
 	rem *** Remove Credits screen ***
 	DeleteSprite(3)
 	 endif
 		 endif
 		 Sync()
		 loop
	endfunction

Activity 8.23

Add the final function to your project and remove the Sync(), do and loop lines
from the main section.

Test the completed project. Does it operate correctly?

The problem is that a variable whose value is determined in PlayGame() is
required in EndGame(). What variable is this? To solve this problem, make the
variable required in EndGame() a global variable.

Retest your project. Does it operate correctly? Save your project.

Activity 8.24

Now that the app is working correctly on your PC, it’s time to try running it on
another platform.

Make sure the app player or viewer is running on your device.

Press AGK’s Compile and Broadcast button. The app should now start
playing on your device. Does the app run correctly on the device?

218� Hands On AGK BASIC: User-Defined Functions

The final problem we have to fix is to set the correct aspect ratio for the main game
screen. Although we set the dimensions of the app window in setup.agc, when the
app is running on your device, that setting has no relevance, so we need to add
another SetDisplayAspect() statement to the SetUpGameScreen() function.

Global Variables and Mini-Specs

As a general rule, we should try to avoid the use of global variables. Global variables
make functions less independent of each other since those functions share access to
the global variables. Global variables can also make finding bugs in a program more
difficult since almost any of the routines could be assigning invalid values to those
variables.

However, there are times when global variables will be necessary (as is the case with
the resource IDs if we load all the resources in a single function).

When a program does contain global variables, then those global variables should be
listed and described as part of the documentation along with the mini-specs.

Notice that the descriptions given give the purpose, name and type of any global
variables.

Any routine that accesses global variables should include details of this. When a
routine makes use of the current contents of a global variable, but does not change
those contents, then the routine is said to read the variable. If a routine changes the
contents of a global variable then this is known as a write.

Details of global variables read or written are added to a mini-spec after the parameter

Activity 8.25

Modify the SetUpGameScreen() function so that it starts with the lines

	 rem *** Set screen aspect ***
 SetDisplayAspect(1024.0/768)

Save the updated project.

Press the Compile and Broadcast button and check that the project now runs
correctly.

GLOBAL VARIABLES in SpotTheDifference

Image IDs
	 main, finish, credits, ring, button, fail 	 : INTEGER

Sound IDs
	 ringsound									 : INTEGER

Music IDs
	 backgroundmusic							 : INTEGER

Number of differences found in image
	 found											 : INTEGER

Hands On AGK BASIC: User-Defined Functions� 219

details. So our updated mini-spec for LoadResources is:

Bottom-Up Programming
Top-down programming is particularly suited to a single programmer working alone,
but if you’re working as part of a team of programmers, then you’re likely to get
landed with having to code a specific routine which, when completed, will be handed
over to the team leader. He will then add your routine to the main program.

So let’s assume we’ve just been landed with the job of writing the EndScreen function.
How do we go about doing this task without having the other parts of the program?

Well, we need to start by getting hold of the mini-spec for the routine and turning it
into a coded function.

Although we might be tempted to think our job is done when we have coded the
function, we really need to check that our routine is operating correctly. It won’t do
your reputation as a programmer any good if you hand over code which contains
obvious faults.

To test a function we start by making sure that what we’ve written conforms to the
requirements of the mini-spec. Once we’re happy with that, then the code itself must
be tested. Since a function only executes when called by another piece of code, we
need to write a main program which will call up the function we want to test. This
main program, known as a test driver, needs to perform five main tasks:

±	Set up any resources required by the function

±	Supply a value for any parameters required by the function

±	Execute the function

±	Display the value of any parameters passed to the function

Activity 8.26

Update the other mini-specs for the SpotTheDifference2 project to give details
of any global variables referenced in each of the routines.

FUNCTION NAME	 :	 LoadResources
PARAMETERS
	 In					 :	 None

GLOBALS
	 Read				 :	 None
	 Written			 :	 button, credit, finish, main, ring, fail, ringsound,
							 backgroundmusic	

PRE-CONDITION	 :	 None

DESCRIPTION		 :	 The images
								 Button.bmp, Credits.jpg, End.jpg
								 Main.jpg, Ring.png, Fail.jpg
							 sound file
								 Click.wav
							 and music file
								 Backgroundmusic.wav
							 are loaded and assigned ID numbers.

220� Hands On AGK BASIC: User-Defined Functions

±	Display any value returned by the function

Sometimes testing a function on its own is going to be difficult since it is so dependent
on the existence of other functions. In the case of EndScreen() we need to make sure
the appropriate images have been loaded and assign a value to the global variable
found. The test driver for EndScreen() is shown in FIG-8.10.

FIG-8.10

EndGame() Test Driver

rem *** EndGame Test Driver ***

rem *** Set up required resources ***
rem *** Global variables required ***
global finish, credits, button, fail
global found
rem *** Images required ***
finish = 		 LoadImage(“End.jpg”)
credits = 	 LoadImage(“Credits.jpg”)
button = 	 LoadImage(“Button.bmp”,1)
fail = 		 LoadImage(“Fail.jpg”)

rem *** Set found ***
found = 6
rem *** Call function under test ***
EndGame(10)
end

rem *** Finish game ***
function EndGame(timetaken)
 rem *** Set screen aspect ***
 SetDisplayAspect(768/1024.0)
		 rem *** IF all differences found ***
		 if found = 6
			 rem *** Show End screen... ***
	 	 	 CreateSprite(1,finish)
			 SetSpriteSize(1,100,100)
			 rem *** ...and total time taken ***
			 CreateText(1,str(timetaken))
			 SetTextColor(1,0,0,0,255)
			 SetTextPosition(1,36,31)
			 Sync()
		 else
			 rem *** Show Fail screen... ***
			 CreateSprite(1,fail)
			 SetSpriteSize(1,100,100)
 endif
		 rem *** ... with button... ***
		 CreateSprite(2,button)
		 SetSpriteSize(2,15,-1)
		 SetSpritePosition(2,80,90)
		 rem *** Allow for Credits button press ***
		 do
 		 pressed = GetPointerPressed()
 		 if pressed = 1
 	x = GetPointerX()
 	y = GetPointerY()
 	hit = GetSpriteHit(x,y)
 	rem *** IF Credit button pressed THEN ***
 	if hit =2
 	 rem *** Show credits for 5 secs ***
 	 CreateSprite(3,credits)
 	 SetSpriteSize(3,100,100)
 	 SetSpriteDepth(3,8) 	

Hands On AGK BASIC: User-Defined Functions� 221

The coding shown here will test the routine working on the assumption that all 6
differences were found and that the total time taken was 10 seconds. To create a
complete set of tests, we need to try various other times to ensure they are displayed
correctly and also to set found to a value less than 6 which will check that the Fail
screen is displayed correctly. Also, when the End and Fail screens are showing, we
should press the Credits button to check that the Credits screen appears correctly.

While various programmers worked on creating the various routines of a project, the
project leader would create the code for the main program, making use of a set of test
stubs for the functions called. As each function became available from the rest of the
team he would replace each test stub with the actual function code and test the
program as each new routine was added.

This approach to program construction is known as bottom-up programming.

Structure Diagrams
As we begin to develop more complex programs containing several routines, it can
be useful to retain an overview of the program’s structure showing which routine is
called by which, and the values that pass between them. This is done using a structure
diagram.

A structure diagram contains one rectangle for each routine in a program, including
a rectangle representing the main program code (this is given the name of the project).
Each rectangle contains the name of the routine it represents. The collection of
rectangles for the SpotTheDifference2 project is shown in FIG-8.11.

The rectangles are now set in a series of levels, with SpotTheDifference (the renamed

FIG-8.10
(continued)

EndGame() Test Driver

FIG-8.11

Function Rectangles

In the design, the
program is referred to as
SpotTheDifference (the
2 being removed).

SpotTheDifference LoadResources SetUpGameScreen PlayGame EndGame

					 Sync()
 	 Sleep(5000)
 	 rem *** Remove Credits screen ***
 	 DeleteSprite(3)
 		 endif
 		 endif
 		 Sync()
		 loop
	 endfunction

Activity 8.27

Start a new project called EndScreenTestDriver.

Create the project’s media folder and copy the relevant resources to the folder.

Change main.agc to match the code in FIG-8.10 and run the code.

Make changes to the code so that other times are used and that the Fail screen is
displayed rather than the End screen.

222� Hands On AGK BASIC: User-Defined Functions

main logic) at the top. On the second level are routines called by SpotTheDifference.

The new layout is shown in FIG-8.12.

Finally, we add any parameters passed between the routines. In this case PlayGame
returns the time taken to find all the differences and EndGame takes that same value
as an In parameter. Parameters are represented by labelled, directed circles (see
FIG-8.13).

The circle with arrowed line symbol in the diagram is used to show the direction in
which data is passed, with In parameters pointing towards a routine and Out
parameters pointing away from the routine.

Summary
±	Good programming technique requires program code to be partitioned into

routines.

±	Each routine should perform a single task.

±	A routine’s name should reflect the purpose of that routine.

±	Mini-specs should be produced when designing a routine.

±	A mini-spec should include the name of the routine, its parameters, restrictions
of the range of values a parameter may take and a detailed description of the
routine’s purpose.

±	A routine should be made as flexible as possible so that it can be used in
situations which differ slightly from the original requirement.

±	The term global can be used to create a variable which can be accessed
anywhere within a program.

±	Top-down programming begins by coding the main routine.

±	Top-down programming uses stubs in place of completed routines.

FIG-8.12

A Structure Diagram
Showing Call Structure

SpotTheDifference

LoadResources SetUpGameScreen PlayGame EndGame

FIG-8.13

A Structure Diagram
Showing Parameters

Note that global
variables are not
represented in structure
diagrams.

SpotTheDifference

LoadResources SetUpGameScreen PlayGame EndGame

timetaken

timetaken

Hands On AGK BASIC: User-Defined Functions� 223

±	Bottom-up programming starts by coding individual routines.

±	Bottom-up programming uses test drivers to check that completed routines are
operating correctly.

±	A structure diagram shows every routine in a program, how they are called,
and the values that pass between them.

224� Hands On AGK BASIC: User-Defined Functions

Solutions
Activity 8.1

We could include the size, font and colour to be used for the
asterisks.

Activity 8.2
No solution required.

Activity 8.3
Code for modified version of UsingFunctions:

rem *** main program ***
DrawLine()
DrawLine()
Sync()
do
loop
end

rem *** Draw a line function ***
function DrawLine()
 Print(“**********”)
endfunction

Activity 8.4
The program’s output is

	 6
	 3

The first of these is the value of the variable v defined within
the Test() function; the second is the value held in the main
program’s v.

Activity 8.5
Code for the updated version of UsingFunctions:

rem *** main program ***
DrawLine()
DrawLine()
Sync()
do
loop
end

rem *** Draw a line function ***
function DrawLine()
 for c = 1 to 10
 PrintC(“*”)
 next c
 Print(“ “)

endfunction

Activity 8.6
Code for the updated version of UsingFunctions:

rem *** main program ***
DrawLine(5)
DrawLine(12)
Sync()
do
loop
end

rem *** Draw a line function ***
function DrawLine(ilength)
 for c = 1 to ilength
 PrintC(“*”)
 next c
 Print(“ “)
endfunction

Activity 8.7
Code for the updated version of UsingFunctions:

rem *** main program ***

rem *** Generate random number ***
num = Random(1,10)
rem *** Call function ***
DrawLine(num)
DrawLine(num*3-2)
Sync()
do
loop
end

rem *** Draw a line function ***
function DrawLine(ilength)
 for c = 1 to ilength
 PrintC(“*”)
 next c
 Print(“ “)

endfunction

Activity 8.8
Code for the updated version of UsingFunctions:

rem *** main program ***

rem *** Call function ***
DrawLine(10,”#”)
Sync()
do
loop
end

rem *** Draw a line function ***
function DrawLine(ilength, schar$)
 for c = 1 to ilength
 PrintC(schar$)
 next c
 Print(“ “)
endfunction

Activity 8.9
Code for the updated version of UsingFunctions:

rem *** main program ***

rem *** Call function ***
DrawLine(101,”+”)
Sync()
do
loop
end

rem *** Draw a line function ***
function DrawLine(ilength, schar$)
 if ilength < 1 or ilength > 100
 exitfunction
 endif
 for c = 1 to ilength
 PrintC(schar$)
 next c
 Print(“ “)
endfunction

Activity 8.10
Code for TestFact:

rem *** main program ***
rem *** Generate random number ***
num = Random(1,10)
rem *** Find factorial of number generated ***
answer = Factorial(num)
rem *** Display results ***
PrintC(“Factorial of “)
PrintC(num)
PrintC(“ is “)
Print(answer)
Sync()
do
loop
end

Hands On AGK BASIC: User-Defined Functions� 225

rem *** Factorial Function ***
function Factorial(ival)
 iresult = 1
 for c = 2 to ival
 iresult = iresult * c
 next c
endfunction iresult

Activity 8.11
Code for the updated version of TestFact:

rem *** main program ***

answer = Factorial(16)
rem *** Display results ***
PrintC(“Factorial of 16 is “)
Print(answer)
Sync()
do
loop
end

rem *** Factorial Function ***
function Factorial(ival)
 if ival < 1 or ival > 15
 exitfunction 0
 endif
 iresult = 1
 for c = 2 to ival
 iresult = iresult * c
 next c
endfunction iresult

Activity 8.12
Code for the updated version of TestFact:

rem *** main program ***
rem *** Generate random number ***
num = Random(10,20)
answer = Factorial(num)
if answer = 0
 rem *** Display error message ***
 PrintC(num)
 Print(“ Factorial too high to calculate”)
else
 rem *** Display results ***
 PrintC(“Factorial of “)
 PrintC(num)
 PrintC(“ is “)
 Print(answer)
endif
Sync()
do
loop
end

rem *** Factorial Function ***
function Factorial(ival)
 if ival < 1 or ival > 15
 exitfunction 0
 endif
 iresult = 1
 for c = 2 to ival
 iresult = iresult * c
 next c
endfunction iresult

Activity 8.13

Activity 8.14
Code for the updated version of StringFunction:

rem *** Main program ***
rem *** Generate string ***
text1$ = RandomString(-1)
text2$ = RandomString(10)
text3$ = RandomString(-5)
rem *** Display strings ***
Print(“Random length:” + text1$)
Print(“Length 10 :” + text2$)
Print(“Invalid :” + text3$+”XXX”)
Sync()
do
loop

rem *** Generate a random-length string of random
letters ***
function RandomString(ilength)
 rem *** IF invalid length, return empty string 	
 ***
 if ilength <>-1 and (ilength <1 or ilength >50)
 exitfunction “”
 endif
 rem *** Determine length of string ***
 if ilength = -1
 rem *** Generate length for string ***
 size = Random(1,50)
 else
 size = ilength
 endif
 rem *** start with empty string ***
 sresult$ = ””
 rem *** FOR size times ***
 for c = 1 to size
 rem *** Add new character to end of string
 ***
 sresult$ = sresult$ + Chr(Random(65,90))
 next c
 rem *** return the string generated ***
endfunction sresult$

Notice that the third Print statement in the main section adds
XXX to the display. This is used to prove that the returned
string is empty rather than filled with space characters. For an
empty string, the final colon and XXX will be joined (:XXX);
if the string contained spaces there would be a gap between
the colon and the X’s (: XXX).

Activity 8.15
No solution required.

Activity 8.16
No solution required.

Activity 8.17
Code for SpotTheDifference2:

LoadResources()
SetUpGameScreen()
time = PlayGame()
EndGame(time)

Changes to setup.agc:
width=1024
height=768

Activity 8.18
Code for the updated version of SpotTheDifference2:

LoadResources()
SetUpGameScreen()
time = PlayGame()
EndGame(time)
Sync()
do
loop
end

FUNCTION NAME	 : 	 RandomString
PARAMETERS
	 In				 : 	 None
	 Out				 :	 sresult : string
PRE-CONDITION	 : 	 None
DESCRIPTION		 : 	 Creates a string of random
						 capital letters between 1 and
						 50 characters in length.

226� Hands On AGK BASIC: User-Defined Functions

function LoadResources
 Print(“LoadResources”)
endfunction

function SetUpGameScreen()
 Print(“SetUpGameScreen”)
endfunction

function PlayGame()
 Print(“PlayGame”)
endfunction 10

function EndGame(timetaken)
 Print(“EndGame”)
endfunction

You should see the names of the four functions appear when
the program is run.

Activity 8.19
Code for the updated version of SpotTheDifference2:

LoadResources()
SetUpGameScreen()
time = PlayGame()
EndGame(time)
Sync()
do
loop
end

rem *** Load resources ***
function LoadResources()
 rem *** Load images ***
	 main = LoadImage(“Main.jpg”)
	 finish = LoadImage(“End.jpg”)
	 credits = LoadImage(“Credits.jpg”)
	 ring = LoadImage(“Ring.png”,0)
	 button = LoadImage(“Button.bmp”,1)
	 fail = LoadImage(“Fail.jpg”)
	 rem *** Load sounds ***
	 ringsound = LoadSound(“Click.wav”)
	 rem *** Load music ***
	 backgroundmusic = LoadMusic(“Background.wav”)
endfunction

function SetUpGameScreen()
 Print(“SetUpGameScreen”)
endfunction

function PlayGame()
 Print(“PlayGame”)
endfunction 10

function EndGame(timetaken)
 Print(“EndGame”)

endfunction

Activity 8.20
Code for the updated version of SpotTheDifference2:

LoadResources()
SetUpGameScreen()
time = PlayGame()
EndGame(time)
Sync()
do
loop
end

rem *** Load resources ***
function LoadResources()
 	rem *** Load images ***
	 main = LoadImage(“Main.jpg”)
	 finish = LoadImage(“End.jpg”)
	 credits = LoadImage(“Credits.jpg”)
	 ring = LoadImage(“Ring.png”,0)
	 button = LoadImage(“Button.bmp”,1)
	 fail = LoadImage(“Fail.jpg”)
	 rem *** Load sounds ***
	 ringsound = LoadSound(“Click.wav”)
	 rem *** Load music ***

	 backgroundmusic = LoadMusic(“Background.wav”)
endfunction

rem *** Set up main section of the game ***
function SetUpGameScreen()
 	rem *** Play music ***
	 PlayMusic(backgroundmusic)
	 rem *** Show main screen ***
	 CreateSprite(1,main)
	 SetSpriteSize(1,100,100)
	 rem *** Load rings at image differences ***
	 CreateSprite(2,ring)
	 SetSpriteSize(2,-1,10)
	 SetSpritePosition(2,91,86)
	 CloneSprite(3,2)
	 SetSpritePosition(3,51.5,22)
	 CloneSprite(4,2)
	 SetSpritePosition(4,49,68)
	 CloneSprite(5,2)
	 SetSpritePosition(5,73,66)
	 CloneSprite(6,2)
	 SetSpritePosition(6,88.5,66)
	 CloneSprite(7,2)
	 SetSpritePosition(7,55.75,62.5)
	 rem *** Hide rings ***
	 for c = 2 to 7
 	SetSpriteDepth(c,9)
 	SetSpriteVisible(c,0)
	 next c
	 rem *** Update screen ***
	 Sync()
endfunction

function PlayGame()
 Print(“PlayGame”)
endfunction 10

function EndGame(timetaken)
 Print(“EndGame”)
endfunction

The new function should begin by starting the background
music. However, it fails when attempting to do this because it
does not recognise the ID given for the music resource.

Activity 8.21
Code for the updated version of SpotTheDifference2:

rem *** Define global variables ***
rem *** IDs for images ***
global main, finish, credits,ring, button, fail
rem *** IDs for sound ***
global ringsound
rem *** IDs for music ***
global backgroundmusic

LoadResources()
SetUpGameScreen()
time = PlayGame()
EndGame(time)
Sync()
do
loop
end

rem *** Load resources ***
function LoadResources()
 	rem *** Load images ***
	 main = LoadImage(“Main.jpg”)
	 finish = LoadImage(“End.jpg”)
	 credits = LoadImage(“Credits.jpg”)
	 ring = LoadImage(“Ring.png”,0)
	 button = LoadImage(“Button.bmp”,1)
	 fail = LoadImage(“Fail.jpg”)
	 rem *** Load sounds ***
	 ringsound = LoadSound(“Click.wav”)
	 rem *** Load music ***
	 backgroundmusic = LoadMusic(“Background.wav”)
endfunction

rem *** Set up main section of the game ***
function SetUpGameScreen()
 	rem *** Play music ***
	 PlayMusic(backgroundmusic)
	 rem *** Show main screen ***
	 CreateSprite(1,main)
	 SetSpriteSize(1,100,100)
	 rem *** Load rings at image differences ***

Hands On AGK BASIC: User-Defined Functions� 227

	 CreateSprite(2,ring)
	 SetSpriteSize(2,-1,10)
	 SetSpritePosition(2,91,86)
	 CloneSprite(3,2)
	 SetSpritePosition(3,51.5,22)
	 CloneSprite(4,2)
	 SetSpritePosition(4,49,68)
	 CloneSprite(5,2)
	 SetSpritePosition(5,73,66)
	 CloneSprite(6,2)
	 SetSpritePosition(6,88.5,66)
	 CloneSprite(7,2)
	 SetSpritePosition(7,55.75,62.5)
	 rem *** Hide rings ***
	 for c = 2 to 7
 	SetSpriteDepth(c,9)
 	SetSpriteVisible(c,0)
	 next c
	 rem *** Update screen ***
	 Sync()
endfunction

function PlayGame()
 Print(“PlayGame”)
endfunction 10

function EndGame(timetaken)
 Print(“EndGame”)
endfunction

The program operates correctly now, getting as far as
showing the main game screen.

Activity 8.22
Code for the updated version of SpotTheDifference2:

rem *** Define global variables ***
rem *** IDs for images ***
global main, finish, credits,ring, button, fail
rem *** IDs for sound ***
global ringsound
rem *** IDs for music ***
global backgroundmusic

LoadResources()
SetUpGameScreen()
time = PlayGame()
EndGame(time)
Sync()
do
loop
end

rem *** Load resources ***
function LoadResources()
 	rem *** Load images ***
	 main = LoadImage(“Main.jpg”)
	 finish = LoadImage(“End.jpg”)
	 credits = LoadImage(“Credits.jpg”)
	 ring = LoadImage(“Ring.png”,0)
	 button = LoadImage(“Button.bmp”,1)
	 fail = LoadImage(“Fail.jpg”)
	 rem *** Load sounds ***
	 ringsound = LoadSound(“Click.wav”)
	 rem *** Load music ***
	 backgroundmusic = LoadMusic(“Background.wav”)
endfunction

rem *** Set up main section of the game ***
function SetUpGameScreen()
 	rem *** Play music ***
	 PlayMusic(backgroundmusic)
	 rem *** Show main screen ***
	 CreateSprite(1,main)
	 SetSpriteSize(1,100,100)
	 rem *** Load rings at image differences ***
	 CreateSprite(2,ring)
	 SetSpriteSize(2,-1,10)
	 SetSpritePosition(2,91,86)
	 CloneSprite(3,2)
	 SetSpritePosition(3,51.5,22)
	 CloneSprite(4,2)
	 SetSpritePosition(4,49,68)
	 CloneSprite(5,2)
	 SetSpritePosition(5,73,66)
	 CloneSprite(6,2)	
	 SetSpritePosition(6,88.5,66)
	 CloneSprite(7,2)

	 SetSpritePosition(7,55.75,62.5)
	 rem *** Hide rings ***
	 for c = 2 to 7
 	SetSpriteDepth(c,9)
 	SetSpriteVisible(c,0)
	 next c
	 rem *** Update screen ***
	 Sync()
endfunction

rem *** Play game ***
function PlayGame()
	 rem *** Start timer ***
	 start = GetSeconds()
	 CreateText(1,str(timetaken))
	 SetTextColor(1,0,0,0,255)
 	SetTextPosition(1,88,6)
	 rem *** Set count of differences found ***
	 found = 0
	 rem *** Number of clicks so far is zero ***
	 rem *** Get user clicks until all 6 differences 	
	 found ***
	 repeat
		 rem *** Check for clicked(pressed)
 	pressed = GetPointerPressed()
		 rem *** IF pressed, ***
 	if pressed = 1
		 	 rem *** Add 1 to clicks ***
		 	 inc presscount
		 	 rem *** Check for sprite hit ***
 	x = GetPointerX()
 	 y = GetPointerY()
 	 hit = GetSpriteHit(x,y)
 	rem *** IF clicked over hidden ring THEN
 	if hit > 1 and hit <=7 and
			 GetSpriteVisible(hit) = 0
 		 rem *** Show ring ***
 	 SetSpriteVisible(hit,1)
 	rem *** Play sound effect ***
 	PlaySound(ringsound)
 		 rem *** Add 1 to differences found ***
 	found = found + 1
 	endif
 		 endif
 	 rem *** Update time so far ***
 	timetaken = GetSeconds() - start
 		 SetTextString(1,Str(timetaken))
 	 Sync()
	 until found = 6 or presscount = 7
	 rem *** Delete existing sprites ***
	 for c = 1 to 7
 	DeleteSprite(c)
	 next c
	 rem *** Delete sound ***
	 DeleteSound(ringsound)
	 rem *** Delete text ***
	 DeleteText(1)
endfunction timetaken

function EndGame(timetaken)
 Print(“EndGame”)
endfunction

The program now allows the player to click on the six
differences.

Activity 8.23
Code for the updated version of SpotTheDifference2:

rem *** Define global variables ***
rem *** IDs for images ***
global main, finish, credits,ring, button, fail
rem *** IDs for sound ***
global ringsound
rem *** IDs for music ***
global backgroundmusic

LoadResources()
SetUpGameScreen()
time = PlayGame()
EndGame(time)
end

rem *** Load resources ***
function LoadResources()
 	rem *** Load images ***
	 main = LoadImage(“Main.jpg”)

228� Hands On AGK BASIC: User-Defined Functions

	 finish = LoadImage(“End.jpg”)
	 credits = LoadImage(“Credits.jpg”)
	 ring = LoadImage(“Ring.png”,0)
	 button = LoadImage(“Button.bmp”,1)
	 fail = LoadImage(“Fail.jpg”)
	 rem *** Load sounds ***
	 ringsound = LoadSound(“Click.wav”)
	 rem *** Load music ***
	 backgroundmusic = LoadMusic(“Background.wav”)
endfunction

rem *** Set up main section of the game ***
function SetUpGameScreen()
 	rem *** Play music ***
	 PlayMusic(backgroundmusic)
	 rem *** Show main screen ***
	 CreateSprite(1,main)
	 SetSpriteSize(1,100,100)
	 rem *** Load rings at image differences ***
	 CreateSprite(2,ring)
	 SetSpriteSize(2,-1,10)
	 SetSpritePosition(2,91,86)
	 CloneSprite(3,2)
	 SetSpritePosition(3,51.5,22)
	 CloneSprite(4,2)
	 SetSpritePosition(4,49,68)
	 CloneSprite(5,2)
	 SetSpritePosition(5,73,66)
	 CloneSprite(6,2)	
	 SetSpritePosition(6,88.5,66)
	 CloneSprite(7,2)
	 SetSpritePosition(7,55.75,62.5)
	 rem *** Hide rings ***
	 for c = 2 to 7
 	SetSpriteDepth(c,9)
 	SetSpriteVisible(c,0)
	 next c
	 rem *** Update screen ***
	 Sync()
endfunction

rem *** Play game ***
function PlayGame()
	 rem *** Reset aspect ratio ***
	 SetDisplayAspect(768/1024.0)
	 rem *** Start timer ***
	 start = GetSeconds()
	 CreateText(1,str(timetaken))
	 SetTextColor(1,0,0,0,255)
 	SetTextPosition(1,88,6)
	 rem *** Set count of differences found ***
	 found = 0
	 rem *** Number of clicks so far is zero ***
	 rem *** Get user clicks until all 6 differences 	
	 found ***
	 repeat
		 rem *** Check for clicked(pressed)
 	pressed = GetPointerPressed()
		 rem *** IF pressed, ***
 	if pressed = 1
		 	 rem *** Add 1 to clicks ***
		 	 inc presscount
		 	 rem *** Check for sprite hit ***
 	x = GetPointerX()
 	 y = GetPointerY()
 	 hit = GetSpriteHit(x,y)
 	rem *** IF clicked over hidden ring THEN
 	if hit > 1 and hit <=7 and
	 	 	 GetSpriteVisible(hit) = 0
 		 rem *** Show ring ***
 	 SetSpriteVisible(hit,1)
 	rem *** Play sound effect ***
 	PlaySound(ringsound)
 		 rem *** Add 1 to differences found ***
 	found = found + 1
 	endif
 		 endif
 	 rem *** Update time so far ***
 	timetaken = GetSeconds() - start
 		 SetTextString(1,Str(timetaken))
 	 Sync()
	 until found = 6 or presscount = 7
	 rem *** Delete existing sprites ***
	 for c = 1 to 7
 	DeleteSprite(c)
	 next c
	 rem *** Delete sound ***
	 DeleteSound(ringsound)
	 rem *** Delete text ***
	 DeleteText(1)

endfunction timetaken

rem *** Finish game ***
function EndGame(timetaken)
	 	 rem *** Wait before finishing ***
		 Sleep(1000)
		 rem *** Reset aspect ratio ***
		 SetDisplayAspect(768.0/1024.0)
		 rem *** IF all differences found ***
		 if found = 6
			 rem *** Show End screen... ***
	 	 	 CreateSprite(1,finish)
			 SetSpriteSize(1,100,100)
			 rem *** ...and total time taken ***
			 CreateText(1,str(timetaken))
			 SetTextColor(1,0,0,0,255)
			 SetTextPosition(1,36,31)
			 Sync()
		 else
			 rem *** Show Fail screen... ***
			 CreateSprite(1,fail)
			 SetSpriteSize(1,100,100)
		 endif
		 rem *** ... with button... ***
		 CreateSprite(2,button)
		 SetSpriteSize(2,15,-1)
		 SetSpritePosition(2,80,90)
		 rem *** Allow for Credits button press ***
		 do
 		 pressed = GetPointerPressed()
 		 if pressed = 1
 	 x = GetPointerX()
 	 y = GetPointerY()
 	 hit = GetSpriteHit(x,y)
 	 rem *** IF Credit button pressed THEN ***
 	 if hit =2
 	 rem *** Show credits for 5 secs ***
 	 CreateSprite(3,credits)
 	 SetSpriteSize(3,100,100)
 	 SetSpriteDepth(3,8)
 	 Sync()
 	 Sleep(5000)
 	 rem *** Remove Credits screen ***
 	 DeleteSprite(3)
 	 endif
 		 endif
 		 Sync()
		 loop
	 endfunction

Even when we find all 6 differences the game shows the Fail
screen.

The variable required is found which contains the count of
how many differences were found by the player.

We need to add the code
rem *** Differences found ***
global found

The program works correctly after these lines have been
added.

Activity 8.24
Although the app runs, it is not in landscape mode for the
main screen.

Activity 8.25

The modified version of SetUpGameScreen():

rem *** Set up main section of the game ***
function SetUpGameScreen()
	 rem *** Set screen aspect ***
	 SetDisplayAspect(1024.0/768)
 	rem *** Play music ***
	 PlayMusic(backgroundmusic)
	 rem *** Show main screen ***
	 CreateSprite(1,main)
	 SetSpriteSize(1,100,100)
	 rem *** Load rings at image differences ***
	 CreateSprite(2,ring)
	 SetSpriteSize(2,-1,10)

Hands On AGK BASIC: User-Defined Functions� 229

	 SetSpritePosition(2,91,86)
	 CloneSprite(3,2)
	 SetSpritePosition(3,51.5,22)
	 CloneSprite(4,2)
	 SetSpritePosition(4,49,68)
	 CloneSprite(5,2)
	 SetSpritePosition(5,73,66)
	 CloneSprite(6,2)	
	 SetSpritePosition(6,88.5,66)
	 CloneSprite(7,2)
	 SetSpritePosition(7,55.75,62.5)
	 rem *** Hide rings ***
	 for c = 2 to 7
 	SetSpriteDepth(c,9)
 	SetSpriteVisible(c,0)
	 next c
	 rem *** Update screen ***
	 Sync()
endfunction

The game should now play correctly on your device.

Activity 8.26

Activity 8.27
To check that the Fail screen appears correctly, modify the
line

	 found = 6

in the main section of the program to read
	 found = 5

FUNCTION NAME	 :	 SetUpGameScreen
PARAMETERS
	 In				 :	 None
	 Out				 :	 None
GLOBALS
	 Read			 :	 backgroundmusic, main, ring
	 Written			 :	 None
PRE-CONDITION	 :	 None
DESCRIPTION		 :	 Sets the aspect ratio of the
						 screen to landscape, starts
						 the background music
						 playing, displays the main
						 game screen, positions the
						 rings over the image
						 differences and hides the
						 rings.

FUNCTION NAME	 :	 PlayGame
PARAMETERS
	 In				 :	 None
	 Out				 :	 timetaken	 : integer
GLOBALS
	 Read			 :	 ringsound
	 Written			 :	 found
PRE-CONDITION	 :	 None
DESCRIPTION		 :	 Allows the player to click on
						 the screen up to 7 times.
						 Keeps a count of how many
						 have been found. Stops when
						 all 6 found or when 7 clicks
						 made.

FUNCTION NAME	 :	 EndGame
PARAMETERS
	 In				 :	 timetaken	 : integer
	 Out				 :	 None
GLOBALS
	 Read			 :	 found, finish, fail
	 Written			 :	 None
PRE-CONDITION	 :	 None
DESCRIPTION		 :	 The display returns to portrait
						 layout. If all 6 differences
						 found, the routine displays the
						 Finish screen and the time
						 taken in seconds. If all 6 are
						 not found, the fail screen is
						 displayed.
						 If the Credits button is
						 pressed, the Credits screen
						 shows for 5 seconds.

230� Hands On AGK BASIC: User-Defined Functions

