
Hands On AGK BASIC : Data 63

In this Chapter:

T Constants

T Variables

T Naming Variables

T Assigning Values to Variables

T Arithmetic Operators

T Operator Precedence

T Random Numbers

T Determining the Elapsed Time

Data

64 Hands On AGK BASIC: Data

Program Data

Introduction
Every computer game has to store and manipulate facts and figures (more commonly
known as data). For example, a program may store the name of a player, the number
of lives remaining or the time left in which to complete a task.

We’ve already seen that all basic data can be grouped into three basic types:

 integer - any whole number, positive, negative or zero
 real - any number containing a decimal point
 string - any collection of characters (may include numeric
 characters)

For example, if player Ian Knot had 3 lives and 10.6 minutes to complete a game,
then:

 3 is an example of an integer value
 10.6 is a real value
 Ian Knot is an example of a string

Constants
When a specific value appears in a computer program’s code it is usually referred to
as a constant. Hence, in the statement

 Print(7)

the value 7 is a constant. When identifying a value as a constant, the constant’s type
is often included in the description, so, for example, 7 is an integer constant.

Variables
Most programs not only need to display information, but also need to store data and
calculate results. To store data in AGK BASIC we need to use a variable. A variable
is, in effect, reserved space within the computer’s memory where a single value can
be stored. Every variable in a program is assigned a unique name and can store only
a single value. When a variable is first created, the type of value it can store (integer,
real or string) is specified. No other type of value can be stored in that variable. For

Real values are
also known as
floating-point
or simply float
values.

Activity 3.1

Identify the type of value for each of the following :

a) -9 b) abc c) 18 d) 12.8
e) ? f) 0 g) -3.0 h) Mary had
i) 4 minutes j) 0.023

Activity 3.2

What type of constants are the following:

a) -12 b) Elizabeth c) 3.14 d) 27.0

Hands On AGK BASIC: Data 65

example, a variable designed to store an integer value cannot store a string.

Integer Variables

In AGK BASIC variables are created automatically as soon as we mention them in
our code. For example, let’s assume we want to store the number of lives allocated
to a game player in a variable called lives. To do this in AGK BASIC we simply write
the line:

 lives = 3

This sets up a variable called lives in the computer’s memory and stores the value 3
in that variable (see FIG-3.1)

This instruction is known as an assignment statement since we are assigning a value
(3) to a variable (lives).

You are free to change the contents of a variable at any time by assigning it a different
value. For example, we can change the contents of lives with a line such as:

 lives = 2

When we do this, any previous value will be removed and the new value stored in its
place (see FIG-3.2).

The variable lives is designed to store an integer value. In the lines below, a, b, c, d,
and e are also integer variables. So the following assignments are correct

 a = 200
 b = 0
 c = -8

but the lines below will cause problems

 d = 3.14
 e = 1.9

since they attempt to store real constants in variables designed to hold integers. AGK
BASIC won’t actually report an error if you try out these last two examples, it simply
rounds the fractional part of the numbers and ends up storing 3 in d and 2 in e (see
FIG-3.3). Fractions of 0.5 and above are rounded up, other values are rounded down.

FIG-3.1

Storing Data in a
Variable

Variable
name

3

Value
storedlives

2

Contents
changedlives

FIG-3.2

Changing the Value
in a Variable

3

d

d = 3.14 e = 1.9 2

e

Rounded
down

Rounded
up

FIG-3.3

Integer Variables Round
Real Values

66 Hands On AGK BASIC: Data

Real Variables

If you want to create a variable capable of storing a real number, then you must end
the variable name with the hash (#) symbol. For example, if we write

 d# = 3.14
 e# = -1.9

we have created variables named d# and e#, both capable of storing real values (see
FIG-3.4).

Any number (real or integer) can be assigned to a real variable, so we could write a
statement such as:

 d# = 12

Although we may assign an integer to a real variable, the value will be stored as a
real. Therefore, when the statement above has been executed, d# will contain 12.0.

If any numeric value can be stored in a real variable, why bother with integer
variables? Actually, you should always use integer values wherever possible because
some hardware can be much faster at handling integer values than real ones. Also,
real numbers can be slightly inaccurate because of rounding errors within the
machine. For example, the value 2.3 might be stored as 2.2999987. Another
consideration is that a real variable requires more space in the computer’s memory
than an integer one.

String Variables

Finally, if you want to store a string value, you need to use a string variable. String
variable names must end with a dollar ($) sign. The value to be stored must be
enclosed in double quotes. We could create a string variable named player$ and store
the name Liz Heron in it using the statement:

 player$ = “Liz Heron”

The double quotes are not stored in the variable (see FIG-3.5).

Absolutely any value can be stored in a string variable as long as that value is enclosed
in double quotes. Below are a few examples:

 a$ = “?>%”
 b$ = “Your spaceship has been destroyed”
 c$ = “That costs $12.50”
 d$ = ““ rem *** A string containing no characters ***

3.14

d#

d# = 3.14 e# = 1.9

e#

1.9

Complete
value stored

FIG-3.4

Real Variables

Liz Heronplayer$ = “Liz Heron”

Everything
between the

quotes...

...is
stored in the

variable

player$FIG-3.5

String Variables

Hands On AGK BASIC: Data 67

Using Meaningful Names

It is important that you use meaningful names for your variables when you write a
program. This helps you remember what a variable is being used for when you go
back and look at your program a month or two after you wrote it. So, rather than write
statements such as

 a = 3
 b = 120
 c = 2000

a better set of statements would be

 lives = 3
 points = 120
 timeremaining = 2000

which give a much clearer indication of the purpose of the variables.

Naming Rules

AGK BASIC, like all other programming languages, demands that you follow a few
rules when you make up a variable name. These rules are:

■ The name should start with a letter.

■ Subsequent characters in the name can be a letter, number, or underscore.

■ The final character can be a # (needed when creating real variables) or $
(needed when creating string variables).

■ Upper or lower case letters can be used, but such differences are ignored.
Hence, the terms total and TOTAL refer to the same variable.

■ The name cannot be an AGK BASIC keyword.

This means that variable names such as

 a, bc, de_2, fgh$, iJKlmnp#

are valid, while names such as

 2a, time-remaining

are invalid.

The most common mistake people make is to have a space in their variable names
(e.g. fuel level). This is not allowed. As a valid alternative, you can replace the space
with an underscore (fuel_level) or join the words together (fuellevel). Using capital

 Ë A keyword is any
term that is used as
part of the language.
For example,
if, then, for, repeat,
etc.

2a - cannot start with a
numeric digit.

time-remaining -
hyphen not allowed.

Activity 3.3

Which of the following are valid AGK BASIC statements that will store the
specified value in the named variable?

a) a = 6 b) b = 12.89 c) c = “Hello”
d) d$ = 5 e) e$ = ‘Goodbye’ f) f# = -12.5

68 Hands On AGK BASIC: Data

letters for the joined words is also popular (FuelLevel).

Note that the names no, no# and no$ represent three different variables; one designed
to hold an integer value (no), one a real value (no#) and the last a string (no$).

Named Constants
We have already seen that assigning meaningful names to the variables used in a
program aids readability. When a program uses a fixed value which has an important
role within the program (for example, perhaps the value 1000 is the score a player
must achieve to win a game), then we have the option of assigning a name to that
value using the #constant statement. The format of the #constant statement is
shown in FIG-3.6.

where:

 name is the name to be assigned to the constant value. A common
 convention is to assign an uppercase name making it easy to
 distinguish between variable names and constant names.

 value is the constant value being named.

For example, we can name the value 1000 WINNINGSCORE using the line:

 #constant WINNINGSCORE = 1000

Since the equal sign (=) is optional, it is also valid to write:

 #constant WINNINGSCORE 1000

Real and string constants can also be named, but the names assigned must NOT end
with # or $ symbols. Therefore the following lines are valid:

 #constant PASSWORD = "neno"
 #constant PI 3.14159

The value assigned to a name cannot be changed, so having written

 #constant WINNINGSCORE = 1000

it is not valid to try to assign a new value later in the program with a line such as:

 WINNINGSCORE = 1900

The two main reasons for using named constants in a program are:

Activity 3.4

Which of the following are invalid variable names:

a) x b) 5 c) “total”
d) al2$ e) total score f) ts#o
g) then h) G2_F3

FIG-3.6

#constant

#constant value[]=name

Hands On AGK BASIC: Data 69

 1) Aiding the readability of the program. For example, it is easier to
 understand the meaning of the line

 if playerscore >= WINNINGSCORE

 than

 if playerscore >= 1000

 2) If the same constant value is used in several places throughout a
 program, it is easier to change its value if it is defined as a named
 constant. For example, if, when writing a second version of a game we
 decide that the winning score has to be changed from 1000 to 2000,
 then we need only change the line

 #constant WINNINGSCORE = 1000

 to

 #constant WINNINGSCORE = 2000

 On the other hand, if we’ve used lines such as

 if playerscore >= 1000

 throughout our program, every one of those lines will have to be
 changed so that the value within them is changed from 1000 to 2000.

Summary
■ Fixed values are known as constants.

■ There are three types of constants: integer, real and string.

■ String constants are always enclosed in double quotes.

■ The double quotes are not part of the string constant.

■ A variable is a space within the computer’s memory where a value can be
stored.

■ Every variable must have a name.

■ A variable’s name determines which type of value it may hold.

■ Variables that end with the # symbol can hold real values.

■ Variables that end with the $ symbol can hold string values.

■ Other variables hold integer values.

■ The name given to a variable should reflect the value held in that variable.

■ When naming a variable the following rules apply:

 The name must start with a letter.
 Subsequent characters in the name can be numeric, alphabetic or the
 underscore character.
 The name may end with a # or $ symbol.
 The name must not be an AGK BASIC keyword.

■ Constants can also be assigned a name.

70 Hands On AGK BASIC: Data

Allocating Values to Variables

Introduction
There are several ways to place a value in a variable. Some of the AGK BASIC
statements available to achieve this are described below.

The Assignment Statement
In the last few pages we’ve used AGK BASIC’s assignment statement to store a value
in a variable. This statement allows the programmer to place a specific value in a
variable, or to store the result of some calculation.

The assignment statement has the form shown in FIG-3.7.

The value copied into the variable may be one of the following:

■ a constant

■ the contents of another variable

■ the result of an arithmetic expression

Examples of each are shown below.

Assigning a Constant

This is the type of assignment we’ve seen earlier, with examples such as

 name$ = “Liz Heron”

where a fixed value (a constant) is copied into the variable. As a general rule, make
sure that the value being assigned is of the same data type as the variable. However,
an integer value may be copied into a real variable, as in the line:

 result# = 33

The program deals with this by storing the value assigned to result# as 33.0.

If you try copying a real value to an integer variable, the real value will be rounded
to the nearest integer and that value stored in the variable. Hence, the line

 number = 33.5

will result in the value 34 being stored in number (value rounded up), while the
assignment

 result = 12.2

=variable valueFIG-3.7

The Assignment
Statement

Activity 3.5

What are the minimum changes required to make the following statements
operate correctly?

a) desc = “tail” b) result = 12.34

Hands On AGK BASIC: Data 71

will store 12 in result (value rounded down).

Copying Another Variable’s Value

Once we’ve assigned a value to a variable in a statement such as

 no1 = 12

we can copy the contents of that variable into another variable with the command:

 no2 = no1

The effect of these two statements is shown in FIG-3.8.

When the assignment is complete, both variables will contain the value 12. As
before, you must make sure the two variables are of the same type, although the
contents of an integer variable may be copied to a real variable as in the line:

 ans# = no1

Copying the contents of a real variable to an integer variable will cause rounding to
the nearest integer. For example,

 ans# = -12.94
 no1 = ans#

will store -13 in no1.

The first statement sets up a variable
called no1 and assigns it the value 12.

The second statement sets up a
variable called no2 and assigns it a
copy of the value held in no1.

no1 = 12

12

no1 no1 no2

12 12

no2 = no1

FIG-3.8

Copying from
Another Variable

Activity 3.6

Assuming a program starts with the lines:

 no1 = 23
 weight# = 125.8
 description$ = “sword”

which of the following instructions would be invalid?

a) no2 = no1 b) no3 = weight# c) result = description$
d) ans# = no1 e) abc$ = weight# f) m# = description$

72 Hands On AGK BASIC: Data

Assigning the Result of an Arithmetic Expression
Another variation for the assignment statement is to have it perform a calculation and
then store the result of that calculation in the named variable. Hence, we might write

 no1 = 7 + 3

which would store the value 10 in the variable no1.

The example shows the use of the addition operator, but there are 6 possible operators
that may be used when performing a calculation. These are shown in FIG-3.9.

The result of most statements should be obvious. For example, if a program begins
with the statements

 no1 = 12
 no2 = 3

and then contains the line

 total = no1 - no2

then the variable total will contain the value 9, while the line

 product = no1 * no2

stores the value 36 in the variable product.

The remainder operator (mod) is used to find the integer remainder after dividing one
integer into another. For example,

 ans = 9 mod 5

assigns the value 4 to the variable ans since 5 divides into 9 once with a remainder
of 4. Other examples are given below:

 6 mod 3 gives 0
 7 mod 9 gives 7
 123 mod 10 gives 3

If the first value is negative, then any remainder is also negative:

 -11 mod 3 gives -2

Operator Example
+

mod
^

addition
subtraction
multiplication

remainder

*
-

Function

power

no1 = no2 + 5
no1 = no2 - 9
ans = no1 * no2
r1# = n01/ 2.0
ans = no2 mod 3

/ division

ans = 2^3

FIG-3.9

Arithmetic
Operators

Activity 3.7

What is the result of the following calculations:

a) 12 mod 5 b) -7 mod 2 c) 5 mod 11 d) -12 mod -8

Hands On AGK BASIC: Data 73

The power operator (^) allows us to perform a calculation of the form xy. For
example, a 24-bit address bus on the microprocessor of your computer allows 224

memory addresses. We could calculate this number with the statement:

 addresses = 2^24

Most of the results produced by these operators are easy to calculate manually as long
as you are capable of basic arithmetic. However, the results of some statements are
not quite so obvious. For example, you might expect the line

 ans# = 19/4

to store the value 4.75 in ans#. In fact, the value stored will be 4.0. This is because
the division operator always returns an integer result if the two values involved are
both integer. On the other hand, if we write

 ans# = 19/4.0

and thereby use a real value in the calculation, then the result stored in ans# will be
the expected 4.75.

When using the division operator, a situation that you must guard against is division
by zero. In mathematics, dividing any number by zero gives an undefined result, so
most programming languages get quite upset if you try to get them to perform such
a calculation. AGK BASIC, on the other hand, will, when presented with a line such
as

 ans = 10/0

store the value 0 in ans.

You might be tempted to think that you would never write such a statement, but a
more likely scenario is that your program contains a line such as

 ans = no1 / no2

and if no2 contains the value zero, attempting to execute the line will still cause a
value of zero to be stored in ans.

Some statements may not appear to make sense if you are used to traditional algebra.
For example, what is the meaning of a line such as

 no1 = no1 + 3

In fact, it means add 3 to no1. We can take the literal meaning of the statement to be:

 Take the value currently stored in no1, add 3, and store the result back in no1.

Another unusual assignment statement is of the form:

 no1 = -no1

The effect of this statement is to change the sign of the value held in no1. For example,
if no1 contained the value 12, the above statement would change that value to -12.
Alternatively, if no1 started off containing the value -12, the above statement would
change no1’s contents to 12.

74 Hands On AGK BASIC: Data

The inc and dec Statements

Because adding to or subtract from the existing value in a variable is so common,
AGK BASIC has added statements specifically to perform those tasks.

The inc statement (short for increment) allows you to add 1 or any other value to the
current contents of a variable. So rather than write

 no1 = no1 + 1

we can write

 inc no1

and in place of

 num = num + 7

we can write

 inc num, 7

Note that no value needs to be given when 1 is being added but for any other value
the amount must be included in the statement

When subtracting, we can use dec statement (short for decrement) in the same way:

 dec x rem *** subtract 1 from x ***
 dec y, 3 rem *** subtract 3 from y ***

So why offer two ways to achieve the same thing? Using inc and dec allows the
compiler to create more efficient code than is possible when using the started
assignment approach.

The format for the inc statement is shown in FIG-3.10.

where:

 variable is the variable whose value is to be incremented.

 value is a numeric value giving the amount to be added to the variable.
 If value is omitted then 1 is added to the variable.

FIG-3.10

The inc Statement
inc variable , value[]

Activity 3.8

Assuming a program starts with the lines:
 no1 = 2
 v# = 41.09
what will be the result of the following instructions?

a) no2 = no1^4 b) x# = v#*2 c) no3 = no1/5
d) no4 = no1 + 7 e) m# = no1/5 f) v2# = v# - 0.1
g) no1 = no1 + 1 h) no5 = -no1

Treat each statement
separately - don’t
assume the results are
cumulative.

Hands On AGK BASIC: Data 75

The format for the dec statement is given in FIG-3.11.

where:

 variable is the variable whose value is to be decremented.

 value is a numeric value giving the amount to be subtracted from the
 variable.

Operator Precedence

Of course, an arithmetic expression may have several parts to it as in the line

 answer = no1 - 3 / v# * 2

and how the final result of such lines is calculated is determined by operator
precedence.

If we have a complex arithmetic expression such as

 answer = 12 + 18 / 3^2 - 6

then there’s a potential problem about what should be done first when calculating the
value of the expression. Will we start by adding 12 and 18 or subtracting 6 from 2,
raising 3 to the power 2, or even dividing 18 by 3?

In fact, calculations are done in a very specific order according to a fixed set of rules.
The rules are that the power operation (^) is always done first. After that comes
remainder, multiplication and division with addition and subtraction done last. The
power operator (^) is said to have a higher priority than remainder, multiplication
and division; they in turn having a higher priority than addition and subtraction. So,
to calculate the result of the statement above the computer begins by performing the
calculation 3^2 which leaves us with:

 answer = 12 + 18 / 9 - 6

Next the division operation is performed (18/9) giving:

 answer = 12 + 2 - 6

The remaining operators, + and -, because they have the same priority, are performed
on a left-to-right basis, meaning that we next calculate 12+2 giving:

 answer = 14 - 6

Finally, the last calculation (14 - 6) is performed leaving

 answer = 8

and the value 8 is stored in the variable answer.

FIG-3.11

The dec Statement
dec variable , value[]

Activity 3.9

What is the result of the calculation 12 - 5 * 12 / 10 - 5 ?

76 Hands On AGK BASIC: Data

Using Parentheses

If we need to change the order in which calculations within an expression are
performed, we can use parentheses. Expressions in parentheses are always done first.
Therefore, if we write

 answer = (12 + 18) / 9 - 6

then 12+18 will be calculated first, leaving:

 answer = 30 / 9 - 6

The next calculation is 30 / 9 :

 answer = 3 - 6
 answer = -3

An arithmetic expression can contain many sets of parentheses. Normally, the
computer calculates the value in the parentheses by starting with the left-most set.

If sets of parentheses are placed inside one another (this is known as nested
parentheses), then the contents of the inner-most set is calculated first. Hence, in the
expression

 12 / (3 * (10 - 6) + 4)

the calculations are performed as follows:

 (10 - 6) giving 12 / (3*4+4)
 3 * 4 giving 12 / (12 + 4)
 12 + 4 giving 12 / 16
 12 / 16 giving 0

The order of precedence for all arithmetic operators is shown in FIG-3.12.

 Ë Remember we
are dividing two
integers so we get
an integer result: 3.

Activity 3.10

Show the steps involved in calculating the result of the expression

 8 * (6-2) / (3-1)

FIG-3.12

Operator Priority

 Ë Operators of
equal priority are
performed on a left-
to-right basis.

Operator Priority
()

+
-

parentheses

multiplication
division

addition

/
*

Description

subtraction

1
2

3
3
4

mod remainder

4

^ power
3

Activity 3.11

Assuming a program begins with the lines no1 = 12, no2 = 3, and no3 = 5
what would be the value stored in answer as a result of the line

 answer = no1/(4 + no2 - 1)*5 - no3^2

Hands On AGK BASIC: Data 77

Variable Range

When first learning to program, a favourite pastime of the beginner is to see how
large a number the computer can handle, so people write lines such as:

 no1 = 123456789000

They are often disappointed when the program crashes at this point.

There is a limit to the value that can be stored in a variable. That limit is determined
by how much memory is allocated to a variable, and that differs from language to
language.

Integer values in AGK BASIC can be in the range -2,147,483,648 to +2,147,483,647
while real values can be stored to about 7 decimal places.

String Operations

The + operator can also be used on string values to join them together. For example,
if we write

 a$ = “to” + “get”

then the value toget is stored in variable a$. If we then continue with the line

 b$ = a$ + “her”

b$ will contain the value together, a result obtained by joining the contents of a$ to
the string constant “her”.

The Print() Statement Again
We’ve already seen that the Print() command can be used to display values on the
screen using lines such as:

 Print(1)
 Print(“Hello”)

We can also get the Print() statement to display the answer to a calculation. Hence,

 Print(7+3)

will display the value 10 on the screen, while the statement

 Print(“Hello ” + “again”) rem ***Note the space after the o***

displays

 Hello again

Activity 3.12

What value will be stored as a result of the statement

 term$ = “abc”+”123”+”xyz”

78 Hands On AGK BASIC: Data

The Print() statement can also be used to display the value held within a variable.
This means that if we follow the statement

 number = 23

by the lines

 Print(number)
 Sync()

our program will display the value 23 on the screen, this being the value held in
number. Real and string variables can be displayed in the same way. Hence the lines

 name$ = “Charlotte”
 weight# = 95.3
 Print(name$)
 Print(weight#)
 Sync()
 do
 loop

will produce the output

 Charlotte
 95.3

Making Use of PrintC()

Although the Print() statement cannot display more than one value at a time, by
using PrintC(), we can display two or more values on the same line of the screen.

For example, the code

 capital$ = “Washington”
 PrintC(“The capital of the USA is ”)
 Print(capital$)
 Sync()
 do
 loop

produces the following output on the screen:

 The capital of the USA is Washington

Activity 3.13

A program contains the following lines of code:

 number = 23
 Print(“number”)
 Print(number)
 Sync()

What output will be produced by the two Print() statements?

 Ë The second
output statement
uses Print() in
order to move the
cursor to a new line
after all output is
complete.

Hands On AGK BASIC: Data 79

Another way to output a sequence of strings, this time using only a single Print()
statement, is to join those strings together so only one data value is being output:

 Print(“Hello, “ + name$ + ”, how are you today?”)

Acquiring Data
Data input can come in many forms: mouse, joystick, screen press, and keyboard are
perhaps the obvious ones. AGK allows all of these and we’ll be looking at each of
those methods later in the book.

Another way to retrieve information is to access the hardware’s timer. AGK offers
only two timer options. One gives you access to the time your program has been
running to the nearest second, the other gives the same information but this time to
the nearest one thousandth of a second.

Timer()

Many of the statements we have looked at so far require you to supply them with
information. For example, you have to supply Print() with the information you
want displayed, while SetClearColor() requires the strength of the red, green and
blue components that make up the background colour you want to use. Values
supplied to commands of this type are known as in parameters.

The Timer() statement, on the other hand, supplies you with information - the time
your program has been running. When a command supplies you with a value, that
value is known as a return value.

Syntax diagrams for commands that return a value have the format shown in FIG-
3.13.

Notice that return type is not enclosed. That is because the return type is information
about the type of value returned by the command, but not part of how the command
is written.

The syntax diagram for the Timer() statement is shown in FIG-3.14.

Activity 3.15

Modify Name so that it uses a single Print() statement to perform all its
output. Test and save the modified code.

FIG-3.13

Statements that
Return a Value

Command Name ()in parametersreturn type

FIG-3.14

Timer() Timer ()float

Activity 3.14

Start a new project (called Name) that sets the contents of the variable name$
to Jaqueline McKinnon and then uses output statements that display the
contents of name$ in such a way that the final message on the screen becomes:

 Hello, Jaqueline McKinnon, how are you today?

80 Hands On AGK BASIC: Data

The diagram tells use that the Timer() statement returns a real value (also known as
a float value) and that no in parameters are required by the statement. Notice that the
parentheses must be included in the statement even though no information is placed
within them. The actual value returned by Timer() is the time your program has been
running to the nearest millisecond.

When a statement returns a value (as is the case with Timer()), generally we will
want to do something with that returned value. Perhaps the most obvious thing to do
is to store the result in a variable. Hence, we could add the line:

 time_elapsed# = Timer()

We could then use that value in a calculation, for example

 minutes = time_elapsed#/60

or simply display the value on the screen:

 Print(time_elapsed#)

The value returned by a statement doesn’t have to be assigned to a variable. In the
last exercise we assigned the value returned by Timer() to a variable then displayed
the contents of that variable on the screen, but we can bypass the need for the variable
by just printing the returned value directly with the line

 Print(Timer())

which executes the Timer() statement then displays the value returned.

Activity 3.16

Start a new project called Time. Change the code in main.agc to read:
 rem *** Get time passed ***
 time_elapsed# = Timer()
 do
 rem *** Display time ***
 PrintC(“Time elapsed : “)
 Print(time_elapsed#)
 Sync()
 loop

Compile and run the program.

You should see the time taken since the program started until the Timer()
command was executed. This should be much less than 1 second.

Modify your program by moving the first two lines between the do and loop
statements. Remember to change the indentation of the moved lines.

Compile and run the program. How does the output differ from the first version
of the program?

Activity 3.17

Modify Time so that the variable time_elapsed# is not required.

Test your modified program.

Hands On AGK BASIC: Data 81

About Sync()

Let’s take a moment out to get a deeper understanding of how Sync() works.

The contents of your screen are updated several times a second. Each update redraws
the entire contents of the screen. Each redrawing is known as a frame.

To create a screen display, AGK reserves two areas of memory within your device.
These areas of memory are known as screen buffers. The contents of one buffer are
used to create the frame currently being displayed on the device’s screen. This is
known as the screen buffer or front buffer. At the same time, the contents of the
second buffer (known as the back buffer) are being updated to contain the layout of
the next frame.

FIG-3.15 shows how these buffers are used in the construction of a frame.

When a Print() or PrintC() statement is executed, the text to be displayed is copied
into the current back buffer.

When a Sync() statement is executed, the two areas of memory swap function: what
was the back buffer, becomes the front buffer and its contents appears on the screen;
and what was the front buffer becomes the back buffer and its contents are cleared.
It should be noted that handling the video buffers is not the Sync() statements only
purpose, it also updates various other aspects of an application. We will examine
these other aspects of Sync() in later chapters.

Understanding this will give you some insight as to where Print() and PrintC()
statements need to be positioned within your program. Let’s see how moving one of
those statements affects the display of the Time project.

FIG-3.15 How the Screen Display is Produced

Memory

Back bu�erFront bu�er
Screen Screen

The contents
of the front buffer
creates the image

The image for
the next frame is built
up in the backbuffer

Memory

Front bu�erBack bu�er

The buffers swap
roles. What was the back buffer
now becomes the front buffer,

its contents are displayed...

...and the
contents of the new back

buffer are cleared

Frame1 Frame 2

82 Hands On AGK BASIC: Data

So, why does the message no longer appear when we move it before the do statement?
In fact, the message does appear, but it is gone so quickly that you won’t have time
to see it. After that, only the time appears.

FIG-3.15 explains the process involved when the first PrintC() statement appears
before the do.

The overall effect is that only values printed between one execution of Sync() and
the next execution of Sync() will appear on the screen. If you want text to stay on
the screen you need to reprint it between each execution of Sync().

Activity 3.18

Since the message Time elapsed : never changes, try moving it before the do
statement, then re-run your program.

What difference does this make to what is displayed?

After performing this, test, return the PrintC() statement to its original position
after the do statement.

There is no need to resave your program.

FIG-3.15

How Sync() Operates

The program starts by executing the
PrintC and Print statements. This
builds up details of what is to be
displayed in the back buffer.

Executing Sync() clears the screen.
What was the back buffer becomes the
front buffer and its contents are
transferred to the screen.

Time elapsed : 0.124513

Data
waiting to be

output

Time elapsed : 0.124513

Time elapsed : 0.124513

Data
transferred to

screen...Back bu�er Front bu�er

When the program returns to the start
of the loop, the Print() statement
causes new details to be sent to the
new back buffer.

The next execution of Sync(), clears
the current contents of the screen and
outputs the new details, and clears the
backbuffer.

0.126945

Data
waiting to be

output

The screen
is cleared...

0.126945

0.126945

...then the
back buffer
becomes the
front buffer and
its data is
copied to the
screen.

Hands On AGK BASIC: Data 83

Timing Again

Most people are happier seeing a short period of time displayed in minutes and
seconds rather than just seconds. To achieve this we can start by rounding the time
elapsed to the nearest second using the line

 total_seconds = Timer()

The number of minutes elapsed can now be calculated as total_seconds divided by
60:

 minutes = total_seconds / 60

The remaining seconds (those not converted to minutes) give us the seconds part of
our time. This is calculated as

 seconds = total_seconds mod 60

The final version of our program is shown in FIG-3.16.

ResetTimer()

Although the timer automatically starts tracking time from the moment your program
begins executing, you can reset that timer to zero using the ResetTimer() statement
(see FIG-3.17).

Notice that this statement has neither in parameters nor a return value, instead it
modifies the contents of a variable maintained by AGK itself.

GetMilliSeconds()

While Timer() returns the time elapsed since the start of the program (or since the
last execution of ResetTimer()) in seconds, you can have that same value in

 Ë Remember,
moving a real value
to an integer variable
causes that value to
be rounded to the
nearest integer.

 Ë Remember, mod
gives you the integer
remainder after
division has taken
place.

FIG-3.16

Displaying Time
Elapsed in Minutes
and Seconds

rem *** Display time elapsed in minutes and seconds ***

do
 rem *** Get time elapsed to nearest second ***
 total_seconds = Timer()
 rem *** Convert to minutes and seconds ***
 minutes = total_seconds / 60
 seconds = total_seconds mod 60
 rem *** Display the result ***
 PrintC(“Time elapsed : “)
 PrintC(minutes)
 PrintC(“:”)
 Print(seconds)
 Sync()
loop

Activity 3.19

Modify your Time program to match the code given in FIG-3.16.

Compile and test your code.

FIG-3.17

GetSeconds()

ResetTimer ()

84 Hands On AGK BASIC: Data

milliseconds by using the GetMilliSeconds() statement (see FIG-3.18).

GetSeconds()

If you are only interested in the time elapsed to the nearest second, you can use the
GetSeconds() statement rather than Timer(). GetSeconds() has the format shown
in FIG-3.19.

Sleep()
It is possible to get a program to do nothing for a set period of time. As a general rule
this is undesirable in a highly animated, interactive game, but for simple games such
as those we will create in the early chapters of this book, getting a program to stop or
slow down can be of use to us. For example, it may be used to give us the time to read
a message on the screen.

Halting a program for a specific time is achieved using the Sleep() statement (see
FIG-3.20).

where:

 imillisecs is an integer value giving the time in milliseconds for which the
 program execution is to halt.

Generating Random Numbers

Often in a game we need to throw a dice, choose a card or think of a number. All of
these are random events. That is to say, we cannot predict what value will be thrown
on the dice, what card will be chosen, or what number some other person will think
of.

To help emulate these type of situations AGK BASIC offers several statements for
the generation and manipulation of random values.

FIG-3.18

GetSeconds()

GetMilliSeconds ()integer

Activity 3.20

Modify Time to use GetSeconds() instead of Timer(). Test your new code.

FIG-3.19

GetSeconds()

()integer GetSeconds

FIG-3.20

Sleep() Sleep ()imillisecs

Activity 3.21

Modify your Time program adding the line

 Sleep(2000) rem *** halt for 2 seconds ***

immediately after the line containing do.

Run the program. How has the new line affected the program?

Hands On AGK BASIC: Data 85

Random()

The Random() statement is used to generate a random number between lower and
upper limits (see FIG-3.21).

where

 ifrom is an integer giving the lowest value allowed.

 ito is an integer giving the highest value allowed.

The statement returns a random integer value in the range ifrom to ito. For example,
if we wanted to simulate the throw of a dice, we could write

 dice_throw = Random(1,6)

which would store a random value between 1 and 6 in dice_throw.

Notice that the syntax diagram tells us the parameters may be omitted allowing us to
write a line such as

 value = Random()

When no range of values is supplied, as in this example, the statement creates a
random number in the range 0 to 65,535.

The program in FIG-3.22 shows another use of the Random() statement to create a
random background colour for the app window.

FIG-3.21

Random()

()integer Random ifrom , ito[]

Activity 3.22

Start a new project (Dice) and create code to perform the following logic:

 Throw a six-sided dice
 Display the value thrown

Test the program by running it several times.

Save and close the project. We will return to this project frequently through the
next few chapters.

FIG-3.22

Random Background
Colour

rem *** Cycle through random background colours ***
do
 rem *** Generate a random value for each colour ***
 red = Random(0,255)
 green = Random(0,255)
 blue = Random(0,255)

 rem *** Clear the screen using the new colour ***
 SetClearColor(red,green,blue)
 Sync()
loop

86 Hands On AGK BASIC: Data

We have already seen that the value returned by a statement can be assigned to a
variable or displayed using a Print() statement, but we can also use the value
returned by one statement as the parameter to another directly, without using a
variable. Hence, we can replace the lines

 red = Random(0,255)
 green = Random(0,255)
 blue = Random(0,255)
 SetClearColor(red,green,blue)

with the line

 SetClearColor(Random(0,255),Random(0,255),Random(0,255))

SetRandomSeed()

Computers can’t really think of a random number all by themselves. Actually, they
cheat and use a mathematical algorithm to calculate an apparently random number.
As long as you don’t know that algorithm, you won’t be able to predict what number
the computer is going to come up with, but because the numbers generated are not
truly random, they are often referred to as pseudo random numbers.

The mathematical formula used needs to be supplied with an initial number to get
started. This is known as the seed value. This seed value determines exactly what set
of pseudo random numbers will be generated - use the same seed value on a second
occasion and exactly the same set of numbers will be generated. To prevent this
happening, the random number generator in AGK defaults to using the time from the
system clock as a seed value. This ensures that a different value is used each time a
program is run.

If you want to use your own seed value, you can do so using the SetRandomSeed()
statement. The most likely reason for doing this is to ensure you use the same seed
value on each run and hence the same set of random values. Normally, of course, you
wouldn’t want the same set of values, but it can be extremely useful when trying to
find mistakes in a program. The SetRandomSeed() has the syntax shown in FIG-3.23.

Activity 3.23

Start a new project (Background) and enter the code given in FIG-3.22.

What happens when you run the program?

Immediately after the Sync() statement, add the lines

 rem *** wait for 0.5 seconds ***
 Sleep(500)

which will get the program to pause for half a second after each screen update.
What difference does this make to the program?

Activity 3.24

Modify your Background project eliminating the need for the red, green and
blue variables. Test your program to ensure it still works correctly.

Hands On AGK BASIC: Data 87

where:

 iseed is an integer value which is used as the start-up for the formula
 used in the generation of pseudo random values.

RandomSign()

A final statement that makes use of a random value is RandomSign() (see FIG-3.24).

where:

 ivalue is an integer value which will be returned as either its original
 value or as a negated form of the original. In other words, if
 ivalue was 12 then the returned value will be either 12 or -12.
 Each return option has a 50% chance of occurring.

One possible use for such a statement is to emulate any situation with two possible
outcomes each with an equal possibility of occurring - for example, the flip of a coin.

User Input
For many games, the most important method of obtaining data is from the user. The
game player, will be moving a mouse, a joystick, tapping on the screen, or typing at
the keyboard. AGK has statements available for handling all of these (and more) but
at this stage using these statements are a bit beyond what we have learned. On the
other hand, being able to enter simple values is very useful when trying to demonstrate
some of the fundamental concepts in programming.

To allow us a simple way to enter integer values, two functions are included in the
download for this book. These functions are:

 SetUpButtons() This function sets up 12 round buttons on the right of the
 app window. The buttons are labelled 0 to 9, (backspace)
 and (Enter).

 GetButtonEntry() This function allows you to type in an integer value using
 the 12 buttons. Pressing the backspace button will remove
 the last character entered. Pressing Enter completes the
 data entry and returns the value entered.

The screen displayed when the buttons are used is shown in FIG-3.25.

FIG-3.23

SetRandomSeed()

()SetRandomSeed iseed

Activity 3.25

Modify your Dice project so that the program starts by setting the seed value to
12.

Run the program three times and check that the same number is generated each
time. Remove the SetRandomSeed() line after testing is complete.

FIG-3.24

RandomSign()

()integer RandomSign ivalue

The term function may,
for the moment, be
taken to have the same
meaning as program
statement.

88 Hands On AGK BASIC: Data

The buttons are placed along the right edge to make them easy to press when the app
is being used on a handheld device. If you want to use these new functions in any of
your projects, you have to follow a few simple steps. These are shown in FIG-3.26.

FIG-3.25

Buttons Layout

backspace

Enter

FIG-3.26

Using the Buttons

The PNG and TXT files are copied to
the project’s media folder. The AGC
file is copied to the project’s main
folder.

In the Projects Panel, right-click on
ButtonTest and select Add files from
the pop-up menu.

Right-click

Select
Add files

We start by creating a new project
(ButtonTest) in which to test the
button routines. Compiling the default
code creates a media subfolder.

The ZIP file download for Hands On
AGK contains a folder called Chapter3.
This folder contains 3 files.

Compile
to create media

folder Files in Chapter 3 folder

Hands On AGK BASIC: Data 89

The complete code (with comments) for main.agc is shown in FIG-3.27.

The buttons are best suited to an app window optimised for the iPad’s resolution of
1024 pixels high by 768 pixels wide, so we need to change the appropriate lines
within the project’s setup.agc to:

 width=768
 height=1024

Double-click on the Buttons.agc file... ...to add the selected file to the
Sources list in the Projects Panel.

Select
Buttons.agc

Buttons.agc
is now in the
Sources list

In main.agc, we need to add the line
 #include “Buttons.agc”
to allow the two functions held there to
be used.

Now we can use SetUpButtons() to
display the 12 buttons and
GetButtonEntry() to accept input.
The value is then displayed.

#include "Buttons.agc"

#include "Buttons.agc"

SetUpButtons()
value_entered = GetButtonEntry()
do
 PrintC("You entered ")
 Print(value_entered)
 Sync()
loop

FIG-3.26

Using the Buttons

FIG-3.27

Button Input

rem *** Command to include other source files used ***

#include “Buttons.agc”

rem *** Display the buttons ***
SetUpButtons()
rem *** Get an integer value from the buttons ***
value_entered = GetButtonEntry()
do
 rem *** Display the value entered ***
 PrintC(“You entered “)
 Print(value_entered)
 Sync()
loop

90 Hands On AGK BASIC: Data

We will be making use of the button input code in a few programs. The process for
using the code is always the same:

	 Copy	the	three	files	to	the	project’s	folders
 Add a #include statement to the start of main.agc
 Call the functions as required by the program logic
	 Modify	the	dimensions	specified	in	setup.agc

Activity 3.26

Start a new project called TestButtons.

Compile the project in order to create the media subfolder.

From the Chapter 3 folder of the files you downloaded for Hands On AGK,
copy Buttons.png and Buttons subtext.txt into the TestButtons project’s media
folder.

From the Chapter 3 folder copy Buttons.agc into the project’s main folder.

Modify the contents of the project’s main.agc so that the code matches that
given in FIG-3.25.

Modify setup.agc so that the width is set to 768 and the height to 1024.

Compile and run the program, checking that you can enter and delete characters
using the buttons.

Check that the number displayed when you press the Enter key matches the
value you typed in.

Save and close your project.

Activity 3.27

Reload your Dice program.

Make the necessary adjusts to allow you to use button input in the program.

Modify the logic of main.agc to match the following structured English
description:

 Display the set of input buttons
 Generate a random number between 0 and 9
 Display “Guess what my number is”
 Get a value entered on the buttons
	 Display	“My	number	was	“	and	the	game’s	number
 Display “Your guess was “ and the value entered

The last two displays should appear on screen at the same time.

Compile and check your program by running it three times.

Resave your project.

Hands On AGK BASIC: Data 91

Summary
■ The assignment statement takes the form

 variable = value

 value can be a constant, other variable, or an expression.

■ The value assigned should be of the same type as the receiving variable.

■ Arithmetic expressions can use the following operators:

 ^ mod * / + -

■ Calculations are performed on the basis of highest priority operator first and a
left-to-right basis.

■ The power operator has the highest priority; multiplication and division and the
remainder operator the next highest, followed by addition and subtraction.

■ Terms enclosed in parentheses are always performed first.

■ The + operator can be used to join strings.

■ AGK uses a pseudo random number algorithm to create apparently random
numbers within a specified range.

■ The values generated are determined by an initial seed value.

■ The default seed value for the algorithm is taken from the system’s time.

■ The seed value can also be set in the program code.

■ Random integer values within a specified range can be created.

92 Hands On AGK BASIC: Data

Testing Sequential Code
The programs in this chapter are very simple ones, with the statements being executed
one after the other, starting with the first and ending with the last. In other words, the
programs are sequential in structure.

Every program we write needs to be tested. For a simple sequential program which
accepts user input, the minimum testing involves thinking of a value to be entered,
predicting what result this value should produce, and then running the program to
check that we do indeed obtain the expected result from that test data.

The program below (see FIG-3.28) reads in a value from the buttons and displays the
square root of that number.

To test this program we might decide to enter the value 16 with the expectation of the
displayed result being 4.

FIG-3.28

Calculating the
Square Root

#include “Buttons.agc”

rem *** Display buttons ***
SetUpButtons()
rem *** Display prompt ***
Print(“Enter a number : “)
Sync()
Sleep(2000)
rem *** Get value ***
no = GetButtonEntry()
rem *** Calculate square root ***
sqroot# = no^0.5
do
 rem *** Display result ***
 PrintC(“Square root of “)
 PrintC(no)
 PrintC(“ is “)
 Print(sqroot#)
 Sync()
loop

Activity 3.28

Start a new project called SquareRoot.

Perform the operations necessary so you can make use of button input in the
program. Set the app windows dimensions to 1024 x 768.

Recode main.agc to match the lines given in FIG-3.28.

Compile the program but do not run it.

Activity 3.29

Test SquareRoot using the value 16.

Did you achieve the expected result?

Hands On AGK BASIC: Data 93

Perhaps that one test would seem sufficient to say that the program is functioning
correctly. However, a more cautious person might try a few more values just to make
sure. But what values should be chosen? Should we try 25 or 9, 3 or 7?

As a general rule it is best to think carefully about what values you choose as test
data. A few carefully chosen values may show up problems when many more
randomly chosen values show nothing.

When the test data involves numeric values only, perhaps the most obvious categories
are positive numbers, negative numbers and zero (which is neither negative or
positive).

We have already tried a positive number (16), so perhaps we should try -9, say, and,
of course, zero.

But in each case it is important that you work out the expected result before entering
your test data into the program - otherwise you have no way of knowing if the results
you are seeing on the screen are correct.

When the value being entered by the user is a string, perhaps the test data could be:

 a string with zero characters (just press the Enter when asked for data)
 a string with only a single character
 a string containing multiple characters

Of course, these suggestions for creating test data will almost certainly need to be
modified depending on the nature of the program you are testing.

Activity 3.30

What results would you expect from SquareRoot if your test data was
 0 and -9

Run the program with these test values and check that the expected results are
produced.

94 Hands On AGK BASIC: Data

Solutions
Activity 3.1

a) Integer b) String c) Integer d) Real
e) String f) Integer g) Real h) String
i) String j) Real

Activity 3.2
a) -12 integer constant
b) Elizabeth string constant
c) 3.14 real constant
d) 27.0 real constant

Activity 3.3
a) Valid
b) Invalid. Stores 13
c) Invalid - not a string variable
d) Invalid - remove $ from variable name or put double
quotes round the 5.
e)Invalid. Must be double quotes, not single quotes.
f) Valid.

Activity 3.4
a) Valid
b) Invalid. Must start with a letter
c) Invalid. Names cannot be within quotes.
d) Valid
e) Invalid. Spaces are not allowed in a name
f) Invalid. # must appear at the end of the name
g) Invalid, then is a BASIC keyword
h) Valid

Activity 3.5
a) desc$=”tall”
b) result#= 12.34

Activity 3.6
a) Valid
b) Invalid. Fraction part rounded
c) Invalid. A string cannot be copied to an integer
 variable
d) Valid
e) Invalid. A real cannot be copied to a string variable
f) Invalid. A string cannot be copied to a real variable

Activity 3.7
a) 2
b) -1
c) 5
d) -4

Activity 3.8
a) no2 is 16
b) x# is 82.18
c) no3 is zero
d) no4 is 9
e) m# is 0.0
f) v2# is 40.99
g) no1 is 3
h) no5 is -2

Activity 3.9
The result is 1
The expression is calculated as follows:
 12-5* 12/10-5
 12-60/10-5
 12-6-5
 6-5
 1

In fact, AGK BASIC doesn't currently abide by the rules of
priority completely with it performing the division before the
multiplication in this example which results in an answer of
2 rather than 1!

Activity 3.10
Steps:
 8*(6-2)/(3-1)
 8*4/(3-1)
 8*4/2
 32/2
 16

Activity 3.11
answer = no1 / (4 + no2 - 1) * 5 - no3 ^ 2
answer = 12 / (4 + 3 - 1) * 5 - 5 ^ 2
answer = 12 / (7 - 1) * 5 - 5 ^ 2
answer = 12 / 6 * 5 - 5 ^ 2
answer = 12 / 6 * 5 - 25
answer = 2 * 5 - 25
answer = 10 - 25
answer = -15

Activity 3.12
term$ will hold the string abcl23xyz

Activity 3.13
Output:
 number
 23

Activity 3.14
The program code:

name$ = “Jaqueline McKinnon”
do
 PrintC(“Hello, “)
 PrintC(name$)
 Print(“, how are you today?”)
 Sync()
loop

Note the spaces inside the quotes to make sure there are gaps
either side of the name.

Activity 3.15
The program code:

name$ = “Jaqueline McKinnon”
do
 Print(“Hello, “+name$+”, how are you today?”)
 Sync()
loop

Activity 3.16
Modified code:

do
 rem *** Get time passed ***

Hands On AGK BASIC: Data 95

 time_elapsed# = Timer()
 rem *** Display time ***
 PrintC(“Time elapsed : “)
 Print(time_elapsed#)
 Sync()
loop

The time displayed on the screen now updates continuously.

Activity 3.17
Modified code:

do
 rem *** Display time passed ***
 PrintC(“Time elapsed : “)
 Print(Timer())
 Sync()
loop

Activity 3.18
Modified code:

PrintC(“Time elapsed : “)
do
 rem *** Display time passed ***
 Print(Timer())
 Sync()
loop

Each time the Sync() statement is executed, only the
contents of Print() or PrintC() statements executed since
the previous execution of Sync() are displayed. Since the
PrintC() statement above is executed only once, its message
disappears the second time the Sync() statement is executed.

Activity 3.19
No solution required.

Activity 3.20
Modified code:

rem *** Display time elapsed in ***
rem *** minutes and seconds ***
do
 rem *** Get time elapsed to nearest second ***
 total_seconds = GetSeconds()
 rem *** Convert to minutes and seconds ***
 minutes = total_seconds / 60
 seconds = total_seconds mod 60
 rem *** Display the result ***
 PrintC(“Time elapsed : “)
 PrintC(minutes)
 PrintC(“:”)
 Print(seconds)
 Sync()
loop

Activity 3.21
Modified code:

rem *** Display time elapsed in ***
rem *** minutes and seconds ***
do
 Sleep(2000) rem *** halt for 2 seconds ***
 rem *** Get time elapsed to nearest second ***
 total_seconds = GetSeconds()
 rem *** Convert to minutes and seconds ***
 minutes = total_seconds / 60
 seconds = total_seconds mod 60
 rem *** Display the result ***
 PrintC(“Time elapsed : “)
 PrintC(minutes)
 PrintC(“:”)
 Print(seconds)
 Sync()
loop

The change means that the screen is only updated every 2
seconds so we see the time pass in 2 second steps.

Activity 3.22
Program code:

rem *** Dice program ***
rem *** Simulates the roll of a 6-sided dice ***
rem *** Throw dice ***
dice = Random(1,6)
do
 rem *** Display value thrown ***
 PrintC(“Value thrown was : “)
 Print(dice)
 Sync()

loop

Activity 3.23
The colours change so quickly that there is not time to update
the whole background before the colour changes again so
bands of colour appear.

Modified code:
rem *** Cycle through random background colours ***
do
 rem *** Generate value for each colour ***
 red = Random(0,255)
 green = Random(0,255)
 blue = Random(0,255)

 rem Clear the screen using the new colour ***
 SetClearColor(red,green,blue)
 Sync()
 rem *** wait for 0.5 seconds ***
 Sleep(500)

loop

Now there is enough time to show the selected colour over
the whole background before another colour is generated.

Activity 3.24
Modified Code:

rem *** Cycle through random background colours ***
do
 rem Clear the screen using random colour ***
 SetClearColor(Random(0,255),Random(0,255),
 Random(0,255))
 Sync()
 rem *** wait for 0.5 seconds ***
 Sleep(500)
loop

Note The symbol  is used to indicate the continuation of a
single line of code.

Activity 3.25
Modified code:

rem *** Dice program ***
rem *** Simulates the roll of a 6-sided dice ***

rem *** Seed random number generator ***
SetRandomSeed(12)
rem *** Throw dice ***
dice = Random(1,6)
do
 rem *** Display value thrown ***
 PrintC(“Value thrown was : “)
 Print(dice)
 Sync()
loop

The program always generates a 6.

Activity 3.26
No solution required.

96 Hands On AGK BASIC: Data

Activity 3.27
Reload your Dice project.
Modify the startup.agc file setting the width to 768 and the
height to 1024.
From the Chapter 3 folder of the files you downloaded for
Hands On AGK, copy Buttons.png and Buttons subtext.txt
into the project’s media folder.
From the Chapter 3 folder copy Buttons.agc into the project’s
main folder.

Right click on Dice in the Projects Panel.
Select Add files from the popup menu.
Select Buttons.agc from the files listed.

Program code:
rem *** Dice program ***
rem *** Simulates the roll of a 10-sided dice ***

rem *** include Buttons***
#include "Buttons.agc"

rem *** Display buttons ***
SetUpButtons()
rem *** Throw dice ***
dice = Random(0,9)
rem *** Display prompt ***
Print("Guess what my number is ")
Sync()
Sleep(2000)
rem *** Get a value ***
guess = GetButtonEntry()
do
 rem *** Display values ***
 PrintC("My number was : ")
 Print(dice)
 PrintC("Your guess was : ")
 Print(guess)
 Sync()
loop

Activity 3.28
Start a new project called SquareRoot.
Compile the project to create the media folder.
Modify the startup.agc file setting the width to 768 and the
height to 1024.
From the Chapter 3 folder of the files you downloaded for
Hands On AGK, copy Buttons.png and Buttons subtext.txt
into the project’s media folder.
From the Chapter 3 folder copy Buttons.agc into the project’s
main folder.

Right click on SquareRoot in the Projects Panel.
Select Add files from the popup menu.
Select Buttons.agc from the files listed.

Change the contents of main.agc to match that given in FIG-
3.24.
Compile the program.

Activity 3.29
Running the program using the value of 16 gives the result
4.0.

Activity 3.30
The expected result using the value zero would be zero.
Using -9 should result in an error since negative values do
not have a square root.

Hands On AGK BASIC : Selection 97

In this Chapter:

T if..endif Statement

T Conditions

T Relational Operators

T Boolean Operators

T if..then Statement

T Nested if Statements

T Testing Selection Structures

Selection

98 Hands On AGK BASIC: Screen Handling

Binary Selection

Introduction
As we saw in structured English, many algorithms need to perform an action only
when a specified condition is met. The general form for this statement was:

 IF condition THEN
 action
 ENDIF

Hence, in our guessing game, we described the response to a correct guess as:

 IF guess = dice THEN
 Say “Correct”
 ENDIF

As we’ll see, AGK BASIC also makes use of an if statement to handle such situations.

if
In its simplest form, the if statement in AGK BASIC takes the format shown in FIG-
4.1.

where:

 condition is any term which can be reduced to a true or false value.

 statement is any executable AGK BASIC statement.

The diagram also tells us that we can have as many statements between condition and
endif as we require.

If condition evaluates to true, then the set of statements between the if and endif
terms are executed; if condition evaluates to false, then the set of statements are
ignored and execution moves on to any statements following the endif term.

Condition

Generally, the condition will be an expression in which the relationship between two
quantities is compared. For example, the condition

 no < 0

will be true if the content of the variable no is less than zero (i.e. negative).

A condition is sometimes referred to as a Boolean expression and has the general
format given in FIG-4.2.

FIG-4.1

if (format 1)

 Ë Unlike the IF in
structured English,
AGK BASIC does not
use the word then.

if condition

statement

endif

Hands On AGK BASIC: Screen Handling 99

where:

 value1 and value2 may be constants, variables, or expressions.

 relational operator is one of the symbols given in FIG-4.3.

From our syntax diagram, we can see that each of the following are valid conditions:

 no1 < 7
 answer# <> no1# * 2
 gender$ = “female”

The values being compared should normally be of the same type, but it is acceptable
to mix integer and real numeric values as in the conditions:

 v > x#
 t# < 12

However, it is not possible to compare a numeric against a string value. Therefore,
conditions such as

 name$ = 34
 no1 <> “16”

are invalid.

When two strings are checked for equality as in the condition

 if name$ = “Fred”

the condition will only be considered true if the match is an exact one. Even the
slightest difference between the two strings will return a false result (see FIG-4.4).

FIG-4.3

The Relational
Operators

 English Symbol

is less than <
is less than or equal to <=
is greater than >
is greater than or equal to >=
is equal to =
is not equal to <>

Activity 4.1

Which of the following are NOT valid Boolean expressions?

a) no1 < 0 b) name$ = “Fred” c) no1 * 3 >= no2 - 6
d) v# => 12.0 e) total <> “0” f) address$ = 14 High Street

FIG-4.4

String
Comparison 1

fred Fred
String1 String2

Uppercase
F

Not equalLowercase
f

value1 value2relational operatorFIG-4.2

Boolean
Expression

100 Hands On AGK BASIC: Screen Handling

Spaces count as characters too. So if one or more spaces are included in a string, their
number and positions within two strings must also match if the strings are to be
considered equal. Since spaces are so important, you will occasionally see the space
represented within a string as a triangle. So rather than show the contents of a string
as

 Hello world

you may see

 Hello∆world

This is only done when clarification of the exact contents of a string is required. For
example, the strings hello and hello∆ are not equal because the second string contains
a space character after the letter o.

Not only is it valid to test if two string values are equal, or not, as in the conditions

 if name$ = “Fred”
 if village$ <> “Turok”

it is also valid to test if one string value is greater or less than another. For example,
it is true that

 “B” > “A”

Such a condition is considered true not because B comes after A in the alphabet, but
because the coding used within the computer to store a “B” has a greater numeric
value than the code used to store “A”.

The method of coding characters is known as ASCII (American Standard Code for
Information Interchange). This coding system is given in Appendix A at the back of
the book.

If you are comparing strings which only contain letters, then one string is less than
another if that first string would appear first in an alphabetically ordered list. Hence,

 “Aardvark” is less than “Abolish”

But watch out for upper and lower case letters. All upper case letters are less than all
lower case letters. Hence, the condition

 “A” < “a”

is true.

If two strings differ in length, with the shorter matching the first part of the longer as

 “abc” < “abcd”

then the shorter string is considered to be less than the longer string. Also, because
the computer compares strings using their internal codes, it can make sense of a
condition such as

 “$” < “?”

which is also considered true since the $ sign has a smaller value than the ? character

Hands On AGK BASIC: Screen Handling 101

in the ASCII coding system.

Structured English to Code

It is not always obvious how to translate an IF statement written in structured English.
In fact, some may take a great deal of coding. For example, the structured English

 IF the text entered contains any punctuation marks THEN
 Remove the punctuation marks from the text
 ENDIF

would require several lines of programming code to achieve. On the other hand,
some statements that might look difficult to code are very simple:

 Structured English:

 IF number is negative THEN
 Make it positive
 ENDIF

 Code:

 if number < 0
 number = -number
 endif

 Structured English:

 IF number is even THEN
 Display “Even number”
 ENDIF

 Code:

 if number mod 2 = 0
 Print(”Even number”)
 endif

Activity 4.2

Determine the result of each of the following conditions (true or false). You
may have to examine the ASCII coding at the end of the book for f).

a) “wxy” = “w xy” b) “def” < “defg” c) “AB” < “BA”
d) “cat” = “cat.” e) “dog” = “Dog” f) “*” > “&”

 Ë Notice the use of
indentation in the program
listings. BASIC does not
demand that this be done,
but indentation makes a
program easier to read - this
is particularly true when
more complex programs are
written.

If you wanted the
display to update
immediately, you would
also add Sync() after the
Print() statement. Activity 4.3

Start a new project EnglishToCode. The program will accept values from
the screen buttons we used previously. The program should implement the
following logic:

 Read in values for no1 and no2
 IF no1 is exactly divisible by no2 THEN
 Display “Exactly divisible”
 ENDIF

Test your program.

Place the lines
 do

 loop
at the end of your
code.

102 Hands On AGK BASIC: Screen Handling

Using if

As we have already said, the syntax diagram for the if statement shows us that we
can have more than one statement between the condition and the term endif. For
example, if a game which used two dice required the dice to be re-thrown if they both
showed the same value, then we would write:

 if dice1 = dice2
 dice1 = Random(1,6)
 dice2 = Random(1,6)
 endif

Compound Conditions - the and and or Operators
Two or more simple conditions (like those given earlier) can be combined using
either the term and or the term or (just as we did in structured English in Chapter 1).

The term and should be used when we need two conditions to be true before an action
should be carried out. For example, if a game requires you to throw two sixes to win,
this could be written as:

 dice1 = Random(1,6)
 dice2 = Random(1,6)
 if dice1 = 6 and dice2 = 6
 Print(“You win!”)
 Sync()
 endif

The statements Print(“You win!”) and Sync() will only be executed if both
conditions, dice1= 6 and dice2 = 6, are true.

You may recall from Chapter 1 that there are four possible combinations for an if
statement containing two simple expressions. Because these two conditions are
linked by the and operator, the overall result will only be true when both conditions
are true. These combinations are shown in FIG-4.5.

Activity 4.4

Load Dice, the project you created in Chapter 3.

Modify the program so that, after the player has typed in his guess, the
program displays the word Wrong if the guess and dice values are not equal.

Test and save your program.

Activity 4.5

Modify the latest version of Dice so that, when the number generated differs
from the guess, the program displays the word Wrong and also the difference
between the two numbers. For example if the computer generates the value 8
and the player guesses 3 then the output would be:

 Wrong. You were out by 5
 My number was 8
 Your guess was 3

Hands On AGK BASIC: Screen Handling 103

We link conditions using the or operator when we require only one of the conditions
given to be true. For example, if a dice game produces a win when the total of two
dice is either 7 or 11, we could write the code for this as:

 dice1 = Random(1,6)
 dice2 = Random(1,6)
 total = dice1 + dice2
 if total = 7 or total = 11
 Print(“You win!”)
 Sync()
 endif

The four possible combinations for two conditions linked by an or are shown in FIG-
4.6.

When you use multiple conditions linked with and or or, each condition must be
properly formed; you cannot shorten things the way you might in standard English.
Hence, the compiler would not accept

 if total = 7 or 11

There is no limit to the number of conditions that can be linked using and and or. For
example, a statement of the form

 IF condition1 AND condition2 AND condition3

means that all three conditions must be true, while the statement

 IF condition1 OR condition2 OR condition3

means that at least one of the conditions must be true.

FIG-4.6

OR
Combinations

 condition 1 condition 2 condition 1 OR condition 2

 false false false
false true true
true false true
true true true

 condition 1 condition 2 condition 1 AND condition 2

 false false false
false true false
true false false
true true true

Activity 4.6

Start a new project called TwoDice. Create a program using the two-dice code
given above.

Add statements to display the values thrown on the two dice. This should
appear irrespective of the values thrown. You will have to reposition the
Sync() statement to get the program to operate correctly.

Test and save your program.

FIG-4.5

AND
Combinations

104 Hands On AGK BASIC: Screen Handling

A complex condition can also contain a mix of and and or operators. An obvious
example of this is the description of how to save a file in AGK:

 IF Save button pressed OR Ctrl key down AND S key pressed THEN
	 	 Save	current	file
 ENDIF

The trouble with conditions like this is that they are open to more than one
interpretation. We could take it to mean:

 that we must press the S key while either clicking on the Save button or
 holding down the Ctrl key

rather than the intended

 either clicking on the Save button or holding down the Ctrl key while pressing
 the S key.

Once we start to create conditions containing both and and or operators, we need to
be aware that Boolean operators (AND, OR and NOT) have a priority order just as
arithmetic operators do. In a condition that contains both and and or, the and operator
takes precedence over the or operator. Knowing this eliminates any ambiguity in the
conditions for saving a file in the example above.

The normal rule of performing the and operation before or can be modified by the
use of parentheses. Expressions within parentheses are always evaluated first. Hence,
if we really did have to click on the press the S key while pressing the Save button or
holding down the Ctrl key, we would write the condition as

 (Save button pressed OR Ctrl key down) AND S key pressed

Activity 4.7

Modify your TwoDice project so that the You win! message also appears if both
dice have equal values.

Test and save your program.

Activity 4.8

Start a new project called ThreeDice.
In this game three dice are thrown. If at least two dice show the same value,
the player has won.

Write a program which implements the following logic:

 Throw all three dice
 IF any two dice match THEN
 Display “You win!”
 ENDIF
 Display the value of each dice

Test and save your program.

Hands On AGK BASIC: Screen Handling 105

The not Operator

AGK BASIC’s not operator works in exactly the same way as that described in
Chapter 1. It is used to negate the final result of a Boolean expression.

In the ThreeDice project you created in Activity 4.8, the if statement used was

 if dice1 = dice2 or dice1 = dice3 or dice2 = dice3
 Print(“You win”)
 endif

Now, if we wanted to change the game to display “You lose” instead of “You win”
then we would have to test for the opposite condition.

As you can see, working out the opposite condition takes a few moments - you may
even have got it wrong on your first attempt. It’s much easier, given that you already
have the condition required for the “You win” message, just to add a not to the
condition:

 if not(dice1 = dice2 or dice1 = dice3 or dice2 = dice3)
 Print(“You lose”)
 endif

Note that the original condition is placed in parentheses. This is because the not
operator has an even higher priority than and and or. Without the parenthesis, the not
operation would be applied to the first term only - dice1 = dice2.

The Boolean operator priority is shown in FIG-4.7.

Operator Priority
()

and
not

1
2
3
4or

Activity 4.9

Write down formal conditions (including any necessary parentheses) for the
following situations:

a) In the game of Monopoly any one of three situations causes your
 piece to “go to jail”. These are: landing on the “Go to Jail” square,
 picking up a “Go to Jail” card, and, throwing the same value on both
 dice three times in a row.

b) In a video game, one way to win is to collect 10,000 gold pieces; an
 alternative is to free the princess from the tower and slay the dragon.

c) In a game of cards, you lose 100 points if you hold either the King or
 Queen of Spades when the Ace of Diamonds is played.

Activity 4.10

Without using the not operator, write down the condition that should be tested
when displaying “You lose” in the dice game.

FIG-4.7

Boolean Priority

106 Hands On AGK BASIC: Screen Handling

else - Creating Two Alternative Actions

In its present form the if statement allows us to perform an action when a given
condition is met. But sometimes we need to perform an action only when the condition
is not met. For example, when the user has to guess the number generated by the
computer, we use an if statement to display the word “Correct” when the user
guesses the number correctly:

 if guess = number
 Print(“Correct”)
 endif

However, shouldn’t we display an alternative message when the player is wrong?
One way to do this is to follow the first if statement with another testing the opposite
condition:

 if guess = dice
 Print(“Correct”)
 endif

 if not guess = dice
 Print(“Wrong”)
 endif

Although this will work, it’s not very efficient since we always have to test both
conditions - and the second condition can’t be true if the first one is!
As an alternative, we can add the word else to our original if statement and follow
this by the action we wish to have carried out when the stated condition is false:

 if guess = dice
 Print(“Correct”)
 else
 Print(“Wrong”)
 endif

This gives us the longer version of the if statement format as shown in FIG-4.8.

Note that we can have an unlimited number of statements between else and endif.

We could also have
written

if guess <> dice

FIG-4.8

if ..else..endif

if condition

else

statement

endif

statement

Activity 4.11

In your Dice program, modify the existing if statement to match the version
given above so that either “Correct” or “Wrong” is displayed. Remove the
code to calculate the difference between the dice and guess values.

Test and save your program.

Hands On AGK BASIC: Screen Handling 107

The Other if Statement
AGK BASIC actually offers a second version of the if statement which has the
format shown in FIG-4.9.

As with the previous if statement, the else section is optional but this version uses
the word then and omits the endif term. Also, as the syntax diagram shows, you are
restricted to a single statement after the then and else terms.

A major restriction when using this version of the if statement is that the else
section of the statement must appear on the same line of the screen as the rest of the
statement.

This means that the code you added in Activity 4.10 would have to be written as:

 if dice = guess then Print(“Correct”) else Print(“Wrong”)

This lack of indented layout is enough to have the hardened programmer throw up
her hands in horror!

Even when a single statement within the if statement is sufficient for the logic being
coded, it is probably best to avoid this version of the if statement, since the
requirement to place the if and else terms on the same line does not allow a good
layout for the program code.

FIG-4.9

if..then..else

Activity 4.12

Start a new project called TwoNumbers.

Make use of the button input files to read in two integer values and then
display the smaller of the two numbers. Also display a message indicating
whether this smaller value is an odd or even number.

The program should use the following logic:

 Display	a	prompt	message	for	first	number
	 Read	the	first	number
 Display a prompt message for the second number
 Read the second number
	 IF	first	number	is	less	than	the	second	number	THEN
	 	 Set	answer	to	first	number
 ELSE
 Set answer to second number
 ENDIF
 Display answer
 IF answer is an even number THEN
 Display “Even”
 ELSE
 Display “Odd”
 ENDIF

if condition elsestatement statementthen []

108 Hands On AGK BASIC: Screen Handling

Summary
± Conditional statements are created using the if statement.

± A Boolean expression is one which gives a result of either true or false.

± Conditions linked by the and operator must all be true for the overall result to
be true.

± Only one of the conditions linked by the or operator needs to be true for the
overall result to be true.

± When the not operation is applied to a condition, it reverses the overall result.

± The statements following a condition are only executed if that condition is
true.

± Statements following the term else are only executed if the condition is false.

± A second version of the if statement is available in AGK BASIC in which if
and else must appear on the same line.

Activity 4.13

a) What is a Boolean expression?
b) How many relational operators are there?
c) If a condition contains and, or and not operators, which will be
 performed first?

Hands On AGK BASIC: Screen Handling 109

Multi-Way Selection

Introduction
A single if statement is fine if all we want to do is perform one of two alternative
actions, but what if we need to perform one action from three or more possible
actions? How can we create code to deal with such a situation?

In structured English we use a modified IF statement of the form:

 IF
 condition 1:
 action1
 condition 2:
 action 2
 ELSE
 action 3
 ENDIF

However, this structure is not available in AGK BASIC and hence we must find some
other way to implement multi-way selection.

Nested if Statements
There are two main ways of achieving multi-way selection in AGK BASIC. One is
to use nested if statements - where one if statement is placed within another. For
example, let’s assume in the Dice project that we want to display one of three
messages: Correct, Your guess is too high, or Your guess is too low. Our previous
solution allowed for two alternative messages, Correct or Wrong, and was coded as:

 if guess = dice
 Print(“Correct”)
 else
 Print(“Wrong”)
 endif

In this new problem the Print(“Wrong”) statement needs to be replaced by the two
alternatives, Your guess is too high or Your guess is too low. But we already know
how to deal with two alternatives - use an if statement. The if statement for this
situation would be:

 if guess > dice
 Print(“Your guess is too high”)
 else
 Print(“Your guess is too low”)
 endif

If we now remove the Print (“Wrong”) statement from our earlier code and substitute
the four lines given above, we get:

 if guess = dice
 Print(“Correct”)
 else
 if guess > dice
 Print(“Your guess is too high”)
 else
 Print(“Your guess is too low”)
 endif
 endif

110 Hands On AGK BASIC: Screen Handling

We have created a nested if situation, where the if guess > dice statement is inside
the else section of the if guess = dice statement.

There is no limit to the number of if statements that can be nested. Hence, if we
required four alternative actions, we might use three nested if statements, while four
nested if statements could handle five alternative actions. To demonstrate this we’ll
take our number guessing game a stage further and have it display one of five possible
messages:

 Your guess is too high (if the guess is more than 2 above the dice)
 Your guess is slightly too high (if the guess is no more than 2 above the dice)
 Correct (if the guess equals the dice)
 Your guess is slightly too low (if the guess is no more than 2 below the dice)
 Your guess is too low (if the guess is more than 2 below the dice)

When we have a set of mutually exclusive conditions, as in the Dice example given
above, following the standard layout of indenting within an if statement results in
the layout shown below:

 if diff > 2
 Print(“Your guess is too low”)
 else
 if diff > 0
 Print(“Your guess is slightly too low”)
 else
 if diff = 0

Activity 4.14

Modify your Dice project so that the game will respond with one of three
messages as shown in the code given above.

Test and save your program.

Activity 4.15

Start a new project called Number.

The program should generate a random number in the range -12 to +12.

The program should now display one of the following messages: Negative (if
the number is less than zero), Zero (if the number is zero), or Positive (if the
number is greater than zero). Finally, the value of the number should also be
displayed.

Test and save your program.

Activity 4.16

Reload Dice.

Modify the code so that it displays one of the five messages given above under
the appropriate conditions. (HINT: You’ll have to calculate the difference
between the guess and dice values again.)

Test and save your program.

 Ë Mutually
exclusive conditions
refers to a set of
conditions where no
more than one of those
conditions can be true
at the same time.

Hands On AGK BASIC: Screen Handling 111

 Print(“Correct”)
 else
 if diff >= -2
 Print(“Your guess is slightly too high”)
 else
 Print(“Your guess is too high”)
 endif
 endif
 endif
 endif

In a situation that included even more options, the indentation can be so extreme that
you may reach the right-hand margin! To solve this problem we often re-arrange the
layout of nested if statements to be

 if diff > 2
 Print(“Your guess is too low”)
 else if diff > 0
 Print(“Your guess is slightly too low”)
 else if diff = 0
 Print(“Correct”)
 else if diff >= -2
 Print(“Your guess is slightly too high”)
 else
 Print(“Your guess is too high”)
 endif endif endif endif

with each option given the same indention as the last, and with the closing set of
endif keywords placed on a single line. This gives a much neater layout which is still
easy to follow.

elseif

The only problem with the previous solution is the need for so many endif terms at
the end of the selection process. To avoid this we can replace the separate else if
terms with the single word elseif. When we do this, only a single endif term is
required at the end of the structure:

if diff > 2
 Print(“Your guess is too low”)
 elseif diff > 0
 Print(“Your guess is slightly too low”)
 elseif diff = 0
 Print(“Correct”)
 elseif diff >= -2
 Print(“Your guess is slightly too high”)
 else
 Print(“Your guess is too high”)
 endif

Activity 4.17

Modify the layout of your Dice program to conform to this new layout style for
multi-way selection. Resave your project.

Activity 4.18

Modify Dice to use the elseif term. Resave your project.

112 Hands On AGK BASIC: Screen Handling

The select Statement
An alternative, and often clearer, way to deal with choosing one action from many is
to employ the select statement. The simplest way to explain the operation of the
select statement is simply to give you an example.

In the code snippet given below we display the name of the day of week corresponding
to the number generated. For example, 1 results in the word Sunday being displayed.

 day = Random(0,8)
 select day
 case 1:
 Print(“Sunday”)
 endcase
 case 2:
 Print(“Monday”)
 endcase
 case 3:
 Print(“Tuesday”)
 endcase
 case 4:
 Print(“Wednesday”)
 endcase
 case 5:
 Print(“Thursday”)
 endcase
 case 6:
 Print(“Friday”)
 endcase
 case 7:
 Print(“Saturday”)
 endcase
 endselect
 Print(day)
 Sync()

Once a value for day has been generated, the select statement chooses the case
statement that matches that value and executes the code given within that section. All
other case statements are ignored and any instructions following the endselect
statement are executed. For example, if day = 3, then the statement given beside case
3 will be executed (i.e. Print(“Tuesday”)) and the remainder of the whole select..
endselect structure ignored with the next statement executed being Print(day). If
day were to be assigned a value not given in any of the case statements (e.g. 0 or 8),
the whole select statement would be ignored and no part of it executed and the next
statement to be executed would be Print(day).

Optionally, a special case statement can be added just before the endselect keyword.
This is the case default option which is used to catch all other values which have
not been mentioned in previous case statements. For example, if we modified our
select statement above to end with the code

 case 7:
 Print(“Saturday”)
 endcase
 case default
 Print(“Invalid day”)
 endcase
 endselect

Hands On AGK BASIC: Screen Handling 113

then, if a value outside the range 1 to 7 is generated, the statement in the case default
option will be executed.

FIG-4.10 shows how the select statement is executed.

Several values can be specified for each case option. If the value of the term given
in the select statement matches any of the values listed in a case statement, then the
statement(s) in that case option will be executed. For example, using the lines

 num = Random(1,10)
 select num
 case 1,3,5,7,9:
 Print(“Odd”)
 endcase
 case 2,4,6,8,10:
 Print(“Even”)
 endcase
 endselect
 print(num)
 Sync()

FIG-4.10

How select Works

select expression

constant1case :
statements

endcase

case default

statements

endcase

endselect

constant2case

statements

endcase

:

3
Once the chosen
section of the select
statement has been
executed, control
moves to the first
statement following
endselect

2 - option 2
if not matching case
value is found, the
statments in the
case default option
are executed

2 - option 1
the statements in
the case containing
a match for
expression are
executed

1
expression is
evaluated

if no case
default is included, then

no part of the select
endselect structure is

executed

statements

114 Hands On AGK BASIC: Screen Handling

the word Odd would be displayed if any odd number between 1 and 9 was entered.

The values given beside the case keyword may also be a string as in the example
below:

 name$ = GetName()
 select name$
 case “Jack”,”Jill” :
 Print(“Hello friend”)
 endcase
 case default
 Print(“I do not know your name”)
 endcase
 endselect
 Sync()

Although the case value may also be a real value as in the line

 CASE 1.52

it is a bad idea to use these since the machine cannot store real values accurately. If
a real variable contained the value 1.52000001 it would not match with the case
value given above.

The general format of the select statement is given in FIG-4.11.

where:

 expression is a variable or expression which reduces to a single
 integer, real or string value.

 value is a constant of any type (integer, real or string).

 statement is any valid AGK BASIC statement
 (even another select statement!).

GetName() is
assumed to be
a user-written
function that
allows the player
to enter their
name.

FIG-4.11

select..endselect select expression

constantcase []
,

:

statement

endcase

case default

statement

endcase

endselect

Hands On AGK BASIC: Screen Handling 115

Not all multi-way selection situations can be coded using the select..endselect
statement. For example, let’s say a number can be in the range 1 to 1000 and we want
to perform specific actions for each of the groupings 1 to 200, 201 to 400, 401 to 600,
601 to 1000 then, since it would be impractical to list all the possible values for each
group in a case line, we would have to code such a problem using nested if
statements.

Testing Selective Code
When a program contains one or more if structures, our test strategy has to change
to cope with this. For every if statement within a program we need to create at least
two test values: one which results in the condition within the if statement being true,
the other in the condition being false. Therefore, if a program contained the lines

 no = GetButtonEntry()
 if no mod 2 = 0
 Print(“This is an even number”)
 endif

then we need to have a test value for no which is even and another which is odd. For
example, we could choose the values 10 and 3.

Another important test for conditions involving less than, or greater than operators
is to find out what happens when the variable’s value is exactly equal to the value
against which it is being tested. For example, if a program contained the lines

 if result < 0
 Print(“Negative”)
 else
 Print(“Positive”)
 endif

then we would want to include zero as one of our test values, giving us three test

This also applies to
less than or equal to
and greater than or
equal to operators.

Activity 4.19

Start a new project, Days.

The program should generate a random number in the range 0 to 8 and display
the corresponding day of the week if the number is in the range 1 to 7. For any
other value, the message Invalid day should be displayed.

Test and save your program.

Activity 4.20

Start a new project, Cards.

Generate a random number in the range 1 to 13 (the number represents the
value of a playing card - 11, 12 and 13 being the Jack, Queen and King).

The program should display the message Court card if 11, 12, or 13 is
generated and Spot card for all other values.

Test and run your program.

116 Hands On AGK BASIC: Screen Handling

values: one less than zero, zero, and one greater than zero. So we could use, say, -7,
0 and 8.

Some of our projects don’t allow for user input - instead they use randomly generated
values. So we have no control over what values will be used when the program is run!

For test purposes, in a situation like this, we can modify the program’s code
temporarily so we can control the value used. Hence, in our Numbers project, for
example, we could change the line

 no = Random(-12,12)

to

 no = -7

Now we can run the program and see if we get the expected result.

In the next two runs of the program we would change the assignment line to 0 and
then 8 to get our other two test values. Once we have satisfied ourselves that the
expected results have been obtained then we must restore the original code line to the
program allowing the value of no to be generated randomly once more.

When an if statement contains more than one condition linked with and or or
operators, testing needs to check each possible combination of true and false settings.
For example, if a program contained the line

 if dice1 = 6 and dice2 = 6

then our tests should include all possible combinations of true and false for the two
conditions. A possible set of values is shown in FIG-4.10.

In a complex condition it is sometimes not possible to create every theoretical
combination of true and false. For example, if a program contains the line

 if total = 7 or total = 11 or dice1 = dice2

then the combinations of true and false for the three conditions are shown in FIG-
4.11.

But the last two combinations in the table are impossible to achieve since total cannot

FIG-4.10

Test Data and
Condition Results

 dice1 dice2 Result

 3 5 false, false
1 6 false, true
6 4 true , false
6 6 true , true

FIG-4.11

Three Condition
Permutations

 total=7 total=11 dice1=dice2

 false false false
false false true
false true false
false true true
true false false
true false true
true true false
true true true

Hands On AGK BASIC: Screen Handling 117

contain the values 7 and 11 at the same time (the conditions are mutually exclusive).
So our test data will have test values which create only the remaining 6 combinations.

Summary
± The term nested if statements refers to the construct where one or more if

statements are placed within the structure of another if statement.

± Multi-way selection can be achieved using nested if or by using the select
statement.

± The select statement can be based on integer, real or string values.

±The case line can have any number of values, each separated by a comma.

±The case default option is executed when the value being searched for
matches none of those given in the CASE statements.

±Testing a simple if statement should ensure that both true and false results are
tested.

±Where a specific value is mentioned in a condition (as in no < 0) , that value
should be part of the test data.

±When a condition contains and or or operators, every possible combination of
results should be tested.

±Nested if statements should be tested by ensuring that every possible path
through the structure is executed by the combination of test data.

±select structures should be tested by using every value specified in the case
statements.

±select should also be tested using a value that does not appear in any of the
case statements.

Activity 4.21

Suggest a set of test values for the latest version of the Dice project (Activity
4.17).

How would we have to modify the program’s code in order to use these test
values?

118 Hands On AGK BASIC: Screen Handling

Solutions
Activity 4.1

a) Valid.
b) Valid.
c) Valid.
d) Invalid. => is not a relational operator (should be >=)
e) Invalid. Integer variable compared with string.
f) Invalid. 14 High Street should be in double quotes.

Activity 4.2
a) False. Only the second string contains a space.
b) True. “def”is shorter and matches the first three characters
 of “defg”.
c) True. “A” comes before “B”.
d) False. Only the second string contains a full stop.
e) False. Only the second string contains a capital D.
f) True. “*” has a greater ASCII coding than “&”

Activity 4.3
Program code:

rem *** include Buttons code ***
#include “Buttons.agc”
rem *** Setup the buttons for input ***
SetUpButtons()
rem *** Get the first value ***
Print(“Enter first value :”)
Sync()
Sleep(2000)
no1 = GetButtonEntry()
rem *** Get the second value ***
Print(“Enter second value : “)
Sync()
Sleep(2000)
no2 = GetButtonEntry()
rem *** if no remainder, display message ***
if no1 mod no2 = 0
 Print(“Exactly divisible”)
 Sync()
endif
do
loop

Activity 4.4
Modified code for Dice is:

rem *** Dice program ***
rem *** Simulates the roll of a 10-sided dice ***

rem *** include Buttons***
#include “Buttons.agc”

rem *** Display buttons ***
SetUpButtons()
rem *** Throw dice ***
dice = Random(0,9)
rem *** Display prompt ***
Print(“Guess what my number is “)
Sync()
Sleep(2000)
rem *** Get a value ***
guess = GetButtonEntry()
rem *** Display message if guess is wrong ***
if guess <> dice
 Print(“Wrong”)
endif
rem *** Display values ***
PrintC(“My number was : “)
Print(dice)
PrintC(“Your guess was : “)
Print(guess)
Sync()
do
loop

Activity 4.5
Modified code for Dice is:

rem *** Dice program ***
rem *** Simulates the roll of a 10-sided dice ***

rem *** include Buttons***
#include “Buttons.agc”

rem *** Display buttons ***
SetUpButtons()
rem *** Throw dice ***
dice = Random(0,9)
rem *** Display prompt ***
Print(“Guess what my number is “)
Sync()
Sleep(2000)
rem *** Get a value ***
guess = GetButtonEntry()
rem *** Display message and difference ***
rem *** if guess is wrong ***
if guess <> dice
 PrintC(“Wrong. You were out by “)
 difference = dice - guess
 Print(difference)
endif
rem *** Display values ***
PrintC(“My number was : “)
Print(dice)
PrintC(“Your guess was : “)
Print(guess)
Sync()
do
loop

You may get a negative value displayed when the guess is
greater than the random number generated.

Activity 4.6
Code for TwoDice:

rem *** Two dice ***

rem *** Throw dice ***
dice1 = Random(1,6)
dice2 = Random(1,6)
rem *** Check for a win ***
total = dice1 + dice2
if total = 7 or total = 11
 Print(“You win!”)
endif
rem *** Display dice values ***
PrintC(“Value of dice 1 : “)
Print(dice1)
PrintC(“Value of dice 2 : “)
Print(dice2)
Sync()
do
loop

Activity 4.7
Modified code for TwoDice:

rem *** Two dice ***

rem *** Throw dice ***
dice1 = Random(1,6)
dice2 = Random(1,6)
rem *** Check for a win ***
total = dice1 + dice2
if total = 7 or total = 11 or dice1 = dice2
 Print(“You win!”)
endif
rem *** Display dice values ***
PrintC(“Value of dice 1 : “)
Print(dice1)
PrintC(“Value of dice 2 : “)
Print(dice2)
Sync()
do
loop

Hands On AGK BASIC: Screen Handling 119

Activity 4.8
Code for ThreeDice:

rem *** Three Dice ***

rem *** Throw dice ***
dice1 = Random(1,6)
dice2 = Random(1,6)
dice3 = Random(1,6)
rem *** IF any two dice match THEN ***
if dice1 = dice2 or dice1 = dice3 or dice2 = dice3
 Print(“You win!”)
endif
rem *** Display values ***
PrintC(“dice 1: “)
Print(dice1)
PrintC(“dice 2: “)
Print(dice2)
PrintC(“dice 2: “)
Print(dice3)
Sync()
do
loop

Activity 4.9
a) IF player lands on “Go to Jail” OR player picks up a
 “Go to Jail” card OR player throws three doubles in a
 row THEN

b) IF 10,00 gold pieces collected OR princess freed AND
 dragon slayed THEN

c) IF (holding King of Spades OR holding Queen of
 Spades) AND Ace of Diamonds played THEN

Activity 4.10
dice1 <> dice2 and dice1 <> dice3 and dice2 <> dice3

Activity 4.11
Modified code for Dice is:

rem *** Dice program ***
rem *** Simulates the roll of a 10-sided dice ***

rem *** include Buttons***
#include “Buttons.agc”

rem *** Display buttons ***
SetUpButtons()
rem *** Throw dice ***
dice = Random(0,9)
rem *** Display prompt ***
Print(“Guess what my number is “)
Sync()
Sleep(2000)
rem *** Get a value ***
guess = GetButtonEntry()
rem *** Display message ***
if guess = dice
 Print(“Correct”)
else
 Print(“Wrong”)
endif
rem *** Display values ***
PrintC(“My number was : “)
Print(dice)
PrintC(“Your guess was : “)
Print(guess)
Sync()
do
loop

Activity 4.12
Code for TwoNumbers

rem *** Smaller odd/even ***

rem *** include Buttons functions ***
#include “Buttons.agc”

rem *** Display buttons ***
SetUpButtons()
rem *** Get numbers ***
Print(“Enter first number “)
Sync()
Sleep(2000)
no1 = GetButtonEntry()
Print(“Enter second number “)
Sync()
Sleep(2000)
no2 = GetButtonEntry()
rem *** Determine smaller value ***
if no1 < no2
 answer = no1
else
 answer = no2
endif
rem *** Display smaller ***
PrintC(“Smaller value is “)
Print(answer)
rem *** Determine if answer is odd or even ***
if answer mod 2 = 0
 Print(“This is an even number”)
else
 Print(“This is an odd number”)
endif
Sync()
do

loop

Activity 4.13
a) A Boolean expression is an expression whose result is
 either true or false.
b) Six. <, <=, >, >=, =, <>
c) not is performed first, and next and or last. This order
 will change if parentheses are used.

Activity 4.14
Modified code for Dice is:

rem *** Dice program ***
rem *** Simulates the roll of a 10-sided dice ***

rem *** include Buttons***
#include “Buttons.agc”

rem *** Display buttons ***
SetUpButtons()
rem *** Throw dice ***
dice = Random(0,9)
rem *** Display prompt ***
Print(“Guess what my number is “)
Sync()
Sleep(2000)
rem *** Get a value ***
guess = GetButtonEntry()
rem *** Display message ***
if guess = dice
 Print(“Correct”)
else
 if guess > dice
 Print(“Your guess is too high”)
 else
 Print(“Your guess is too low”)
 endif
endif
rem *** Display values ***
PrintC(“My number was : “)
Print(dice)
PrintC(“Your guess was : “)
Print(guess)
Sync()
do
loop

Activity 4.15
Code for Number:

rem *** Random number between -12 and 12 ***

rem *** Generate number ****
no = Random(-12,12)
rem *** Display number’s sign ***

120 Hands On AGK BASIC: Screen Handling

if no < 0
 Print(“Negative”)
else
 if no = 0
 Print(“Zero”)
 else
 Print(“Positive”)
 endif
endif
rem *** Disply number ***
Print(no)
Sync()
do
loop

Activity 4.16
Modified code for Dice:

rem *** Dice program ***
rem *** Simulates the roll of a 10-sided dice ***

rem *** include Buttons***
#include “Buttons.agc”

rem *** Display buttons ***
SetUpButtons()
rem *** Throw dice ***
dice = Random(0,9)
rem *** Display prompt ***
Print(“Guess what my number is “)
Sync()
Sleep(2000)
rem *** Get a value ***
guess = GetButtonEntry()
rem *** Display message ***
diff = dice - guess
if diff > 2
 Print(“Your guess is too low”)
else
 if diff > 0
 Print(“Your guess is slightly too low “)
 else
 if diff = 0
 Print(“Correct”)
 else
 if diff >= -2
 Print(“Your guess is slightly too
 high”)
 else
 Print(“Your guess is too high”)
 endif
 endif
 endif
endif
rem *** Display values ***
PrintC(“My number was : “)
Print(dice)
PrintC(“Your guess was : “)
Print(guess)
Sync()
do
loop

Activity 4.17
The multi-way selection section of Dice’s code should now
be have the following layout:

if diff > 2
 Print(“You guess is too low”)
else if diff > 0
 Print(“Your guess is slightly too low “)
else if diff = 0
 Print(“Correct”)
else if diff >= -2
 Print(“Your guess is slightly too high”)
else
 Print(“Your guess is too high”)
endif endif endif endif

Activity 4.18
New new multi-way selection coding in Dice should now be:

if diff > 2
 Print(“You guess is too low”)

elseif diff > 0
 Print(“Your guess is slightly too low “)
elseif diff = 0
 Print(“Correct”)
elseif diff >= -2
 Print(“Your guess is slightly too high”)
else
 Print(“Your guess is too high”)
endif

Activity 4.19
Code for Days:

rem *** Display day of the week ***

rem *** Generate value ***
day = Random(0,8)

rem *** Display day of week ***
select day
 case 1:
 Print(“Sunday”)
 endcase
 case 2:
 Print(“Monday”)
 endcase
 case 3:
 Print(“Tuesday”)
 endcase
 case 4:
 Print(“Wednesday”)
 endcase
 case 5:
 Print(“Thursday”)
 endcase
 case 6:
 Print(“Friday”)
 endcase
 case 7:
 Print(“Saturday”)
 endcase
 case default
 Print(“Invalid day”)
 endcase
endselect
rem *** Display number generated ***
Print(day)
Sync()
do
loop

Activity 4.20
Code for Cards:

rem *** Cards ***

rem *** Generate card value ***
card = Random(1,13)

rem *** Display card type ***
select card
 case 11,12,13:
 Print(“Court card”)
 endcase
 case default
 Print(“Spot card”)
 endcase
endselect
Print(card)
Sync()
do
loop

Note that all of the spot cards can be handled in the case
default option because there is no chance of an invalid value
being used.

Activity 4.21
The test data needs to cover all the possible paths through the
nested if statements. In doing this we will have tested each
condition for both true and false options.

Hands On AGK BASIC: Screen Handling 121

So possible values are

 dice guess Expected results
 8 2 Your guess is too low
 5 4 Your guess is slightly too low
 7 7 Correct
 2 4 Your guess is slightly too high
 3 8 Your guess is too high

In addition, we would expect the values of dice and guess to
be displayed.

Since the dice values are randomly generated it would
be impractical to use our test data. We can overcome this
problem by setting the variable dice to a specific value rather
than determining its value using Random(). Once testing is
complete, the random assignment can be restored.

122 Hands On AGK BASIC: Screen Handling

