

Hands On AGK BASIC
A Beginner’s Guide to Multi-Platform Games Programming

Alistair Stewart

Digital Skills
Milton
Barr
Girvan
Ayrshire
KA26 9TY
United Kingdom

+44(0)1465 861 638tel:
www.digital-skills.co.uk

Copyright © 2012-2013 Alistair Stewart

All rights reserved.

No part of this work may be reproduced or used in any form without the
written permission of the author.

Although every effort has been made to ensure accuracy, the author and
publisher accept neither liability nor responsibility for any loss or damage
arising from the information in this book.

AGK BASIC is produced by The Game Creators Ltd.

Cover Design: Sébastien Leroux

Printed June 2012
Updated February 2013
ebook Updated April 2013

Title: Hands On AGK BASIC

ISBN: 978-1-874107-14-9

Other Titles Available:

Hands On DarkBASIC Pro Vols 1 & 2
Hands On Milkshape

Table of Contents
Foreword i
Preface iii

Acknowledgements iii
How to Get the Most Out of this Book iv

Chapter 1 - Algorithms
Designing Algorithms 2

Following Instructions 2
Control Structures 3
Sequence 3
Selection 4
Complex Conditions 10
Iteration 14
Data 20
Levels of Detail 22
Checking for Errors 26
Summary 29

Solutions 32

Chapter 2 - Starting AGK
Programming a Computer 36

Introduction 36
The Compilation Process 36
Summary 38

Starting AGK 39
Introduction 39
Starting Up AGK 39
The Program Code 42
Transferring Your App to a Tablet or Smartphone 43
Summary 44

First Statements in AGK BASIC 45
Introduction 45
Print() 45
Adding Comments 47
PrintC() 47
Other Statements which Modify Output 48
Summary 52

The Second Source File 54
A Splash Screen 55
Starting a New Project 56
App Window Properties 57

Measurements 57
Summary 59

Solutions 61

Chapter 3 - Data
Program Data 64

Introduction 64
Constants 64
Variables 64
Named Constants 68
Summary 69

Allocating Values to Variables 70
Introduction 70
The Assignment Statement 70
The Print() Statement Again 77
Acquiring Data 79
User Input 87
Summary 90

Testing Sequential Code 91
Solutions 93

Chapter 4 - Selection
Binary Selection 98

Introduction 98
if 98
The Other if Statement 107
Summary 108

Multi-Way Selection 109
Introduction 109
Nested if Statements 109
The select Statement 112
Testing Selective Code 115
Summary 117

Solutions 118

Chapter 5 - Iteration
Iteration 124

Introduction 124
The while .. endwhile Construct 124
The repeat .. until Construct 126
The for..next Construct 128
Finding the Smallest Value in a List of Values 133
The exit Statement 134
The do .. loop Construct 135
Nested Loops 135
Nested for Loops 136
Testing Iterative Code 137
Summary 139

Solutions 140

Chapter 6 - A First Look at Resources
Resources - A First Look 146

Introduction 146
Images 146
Images in AGK 149
Sound 156
Music 159
Detecting User Interaction 163
Text Resources 165
Later 170
Summary 170

Solutions 172

Chapter 7 - Spot the Difference Game
Game - Spot the Difference 176

Introduction 176
Game Design 176
Game Code 182

Solutions 188

Chapter 8 - User-Defined Functions
Functions 192

Introduction 192
Functions 192
Parameters 196
Summary 206

 BASIC Subroutines 207
Introduction 207
Creating a Subroutine 207

A Library of Functions 209
Introduction 209
Creating a Library 209

Creating Modular Software 211
Introduction 211
Top-Down Programming 212
Bottom-Up Programming 219
Structure Diagrams 221
Summary 222

Solutions 224

Chapter 9 - String and Math Functions
String Functions 232

Introduction 232
String-Handling Functions 232
Creating Your Own String Functions 242
Summary 248

Math Functions 250
Introduction 250
Coordinates 250
Trigonometric Functions 251
Other Math Functions 259
Summary 262

Solutions 265

Chapter 10 - Arrays
Arrays 270

Problems with Simple Variables 270
One Dimensional Arrays 271
Using Arrays 276
Dynamic Arrays 293
The undim Statement 294
Multi-dimensional Arrays 294
3-Dimensional Arrays and Higher 295
Arrays and Functions 296
Summary 296

Solutions 297

Chapter 11 - Data Types and Operators
Data Storage 304

Introduction 304
Declaring Variables 304
Type Definitions 305
Summary 310

Data Manipulation 311
Introduction 311
Other Number Systems 311
Shift Operators 312
Bitwise Boolean Operators 314
A Practical Use For Bitwise Operations 317
Summary 318

Solutions 320

Chapter 12 - File Handling
Files 324

Introduction 324
Accessing Files 324
File Management 330
Folder Management 331
Zip Files 335
Summary 336

Solutions 338

Chapter 13 - Particles
Particles 342

Introduction 342
Creating Particles 342
Retrieving Particles Data 355
Summary 359

Solutions 361

Chapter 14 - Text
Text 366

Introduction 366
Review 366
Further Text Statements 367
Text Character Statements 375
Summary 385

Solutions 389

Chapter 15 - User Input
Virtual Buttons 392

Introduction 392
Virtual Button Statements 392
Using Multiple Virtual Buttons 397
Summary 399

Keyboard Input 400
Introduction 400
Text-Input Statements 400
Summary 404

Edit Box Statements 405
Introduction 405
Edit Box Statements 405
Summary 418

Joystick Input 421
Introduction 421
Virtual Joystick Statements 421
Physical Joysticks 427
Summary 430

Device Dependent Input 432
Introduction 432
Accelerometer Statements 432
Mouse Statements 435
Joystick Statements 437
Keyboard Statements 440
Device Identity 442
Summary 442

Solutions 444

Chapter 16 - Images
Images 450

Introduction 450
Review 450
Further Image Statements 450
The ImageJoiner Utility 455
Atlas Texture Files and Proportional Fonts 456
Manipulating Images 457
Image Selection from Storage 460
Using a Device’s Camera 461
Mapping Images to Sprites 463
Summary 466

Solutions 468

Chapter 17 - Sprites
Sprites 470

Introduction 470
Review 470
Other Sprite Statements 471
The Sprite Offset Feature 494
Sprite Bounding Areas 499
Sprite Groups 505
Moving Sprites 511
Controlling Speed 523
Ray Casting 524
Summary 532

A Jigsaw Puzzle Game 535
Introduction 535
The Game 535
The Data Files 535
Game Layout 536
The Game Code 537

Solutions 541

Chapter 18 - Animated Sprites
Introduction 550
Using an Animated Sprite 550
A Card Trick 556
Summary 558

An Asteroid Game 560
Introduction 560
Game Layout 560
Game Logic 561
Game Resources 561
Game Code 561

Solutions 573

Chapter 19 - Screen Handling
Screen Handling 580

Introduction 580
Screen-Related Statements 580
Zooming and Scrolling 583
Touch Statements 595
Summary 602

Secrets of Sync() 604
Summary 608

Solutions 609

Chapter 20 - Physics
Sprite Physics - 1 614

Introduction 614
Basic Physic Statements 614
Physics Collisions 628
Physics Sprite Shapes 630
Summary 634

World Physics 636
Introduction 636
General Statements 636
Forces 638
Summary 641

Sprite Physics - 2 643
Contacts 643
Physics Groups and Categories 648
Physics Ray Casting 653
Summary 656

Joints 658
Introduction 658
Joint Statements 658
Summary 683

Solutions 685

Chapter 21 - Accessing a Network
Multiplayer Games 692

Introduction 692
Hardware Requirements 692
The Host and its Clients 692
Multiplayer Statements 693
Summary 716

Multi-Player Tic Tak Toe 718
Introduction 718
Game Logic 718
Program Code 719

HTTP 727
Introduction 727

HTTP Statements 727
Summary 736

Solutions 738

Chapter 22 - Bits and Pieces
Date and Time 748

Introduction 748
Standard Date Statements 748
Unix Date Statements 749
Time Statements 751
Summary 752

QR Coding 753
Introduction 753
QR Code Statements 753
Summary 755

Advertising 756
Introduction 756
Ad Statements 756
Summary 757

Errors 759
Introduction 759
Error Handling Statements 759
Summary 760

Benchmarking 761
Introduction 761
Benchmarking Statements 761
Summary 765

Paused Apps 766
Solutions 769

Chapter 23 - 3D Graphics
Concepts and Terminology 772

Introduction 772
Modelling Ideas and Terminology 776
Summary 783

Creating a First 3D App 786
Introduction 786
Statements 786
User Control of the Camera 790
Summary 792

Object Creation and Modification 793
Creating Primitives 793
Object Appearance 798
Transforming Objects 803

Cameras 816
Introduction 816
Camera-Related Statements 816
Using Camera Commands to Create First Person Perspective 823
Billboarding 828

Summary 829
Lights 831

Introduction 831
Directional Lights 831
Point Lights 833
Object Reflectivity 835
Summary 836

Collisions
Introduction 837
Ray Cast Statements 837
Summary 855

Other 3D Related Statements 857
Converting Between Screen and 3D Coordinates 857
Sprite and 3D Depth Settings 863
The Depth Buffer 863
Shaders 866
Quaternion Rotation 869
Summary 872

Solutions 873

Chapter 24 - Memory Blocks
Accessing Memory 884

Introduction 884
Memory Block Statements 885
Storing Characters and Strings in a Memory Block 891
Using a Memory Block as an Array 893
Using a Memory Block as a Record Structure 895
Saving Memory Block Data to a File 904
Summary 908

Memory Blocks for Images 910
Introduction 910
Memory Block Image Statements 910
Mapping a Pixel to a Memory Block 912
Modifying an Image’s Data 913
Creating Your Own Images from Scratch 914
Summary 916

Creating a Mandelbrot Image 918
Producing the Program 920
Zooming In 927
Shortcomings 930

Solutions 932

Chapter 25 - Drawing
Drawing Statements 940

Drawing a Line 940
Drawing a Dot 940
Drawing a Rectangle 941
Drawing a Circle 943
Drawing an Ellipse 945

Creating a Data Structure for Basic Shapes 947
Summary 952

Drawing a Simple Bezier Curve 953
Introduction 953
Calculating the Curve 953
Creating a Bezier Curve in Real Time 960

Displaying 3D Models in Wireframe 966
Introduction 966
Developing the Program Logic 968
Implementing the Program 969

Solutions 975

Appendix A - ASCII Codes 939
Index 940

xii Hands On AGK BASIC: Foreword

Foreword

by Lee Bamber

When I was nine I received my first personal computer, a VIC-20, which was blessed
with over 3K of system memory and a maximum palette of 16 colours. From that
moment my universe was slightly larger than the amount of memory it takes to store
this paragraph of text. In that universe I created lost civilisations, space battles, deep
treks into inhospitable lands and dangerous creatures ready leap out from every dark
corner. Granted most of it happened in the imagination of the player, but my audience
consisted of my parents, my brothers and my uncle who all thought my ‘games’ were
amazing.

What was truly amazing was the rate at which the limits of my universe expanded
with more memory, more colours, more speed and a bigger audience to play my
‘games’. We went from back-bedroom build-your-own hobby developers to a global
industry worth Billions, and it happened so quickly we still have the original founders
of this industry working alongside the newest recruits.

Veteran fogies like me can look back and see so much history that when something
new comes along, we can almost instantly compare it to five things it strongly
resembles from our own fading recollections. We can also identify when something
is utterly game-changing, and it usually happens on an epic scale. For me, that
moment was when the term ‘apps’ entered the public consciousness. Before then you
had software you went out and bought, because you needed software. When the idea
of an ‘app’ emerged, it gave ‘software’ a name change and a leviathan marketing
budget to spend to the end of time. We are no longer a community of developers who
write software, we’re a community that creates solutions to make life better, and its
consumers, not developers, who are deciding what those should be.

Here in lies the problem for us poor, overworked developers. We had our plate full
just writing software that worked sufficiently for a period of time on one computer.
Now we have to create solutions for everyone, where-ever they are, when-ever they
want to use it and what-ever they are using as a ‘computer’ at the time. People today
want to use their favourite ‘app’ on their home computer, their phone, their TV, in
their car and on their fancy new touch tablet, and they want it instantly and constantly
up to date. It’s enough to make you cry!

In the best tradition of software developers, whenever we face an emergent system
that requires an impossible amount of resources, we simply change the system. Why
have ten developers working on ten different systems when you can have one
developer working on a single system, and then have a cleverer system translate that
work to the other nine automatically. Sounds great in theory, but the practical
application produces a number of very oddly shaped solutions indeed.

Now what if you could spin the time machine forward a few years and grab one of
the nicer solutions to this problem and then zip back to the present day and start using
it? Well it just so happens that I do have a time machine and did just that. It seems,
The Game Creators Ltd of 2015 ‘will be’ working with a new piece of software called
AGK (App Game Kit) and they ‘will make’ me promise that providing I don’t upset
causality, I can take an early copy back with me to 2011 to help them omega test it.
Call it a moment of weakness, but I might have put this copy of the product on a
website at www.appgamekit.com.

Apparently the break-through with AGK is that you can develop an app on one

Hands On AGK BASIC: Foreword xiii

system, and it will be instantly compatible with every other system on the planet. I’ve
only managed to get it working on Windows, Mac, MeeGo, iOS, Android and Bada
at the moment, but with some more tweaking of their strange alien code I ‘will be’
assured I can get it to produce all the other platforms present on Earth, even the ones
that don’t exist yet.

AGK uses the concept of universal commands. That is, each command will perform
the same functionality no matter which system it happens to be running on. It is also
input agnostic, so if your application requires an input source that does not exist,
AGK will virtualise that input data from another piece of hardware present on the
device or emulate it through virtual controls. The result is that you can write an ‘app’
just once, and the resulting program will run on any device present today and any
device in the future too.

As developers we have a few decades of history under our belt and can swell with
pride on what we have achieved to date. My prediction is that we’ve just created the
world’s largest rod for our backs, and now have to finish what we started. The only
way forward is to evolve ten pairs of hands through a fortuitous genetic mutation, or
find a solution that lets us meet the demands of the next few decades with confidence,
a sense of fun and above all, ten fingers!

Lee Bamber
CEO The Game Creators Ltd
2012

xiv Hands On AGK BASIC: Foreword

Preface
Welcome to the amazing world of the App Game Kit. This is an application that will
allow you to create a program that you can design on one machine and run on just
about any other platform.

Want to write a game that will run on your phone or your tablet? No problem! Write
the application on your regular computer and transfer it to your other devices - it’s
easy!

Graphics, animation, sound, touch screen, mouse, joystick, keyboard - your app will
cope with them all.

Write your apps and sell them online. Some game apps have sold over 5 million
copies.

And although AGK stands for App Game Kit, there’s no reason why your creation
has to be a game. You can easily write educational material, utilities or any number
of applications.

Who is this book for? It’s for you. It doesn’t matter if you’re a programming guru or
have never written a line of code in your life. This book assumes only a basic
knowledge of computers. If you can run an application, copy, paste, delete data,
access the internet, type (even with just one finger), and know just a little basic
arithmetic then that’s all that assumed. Everything else is here. And for the guru there
are plenty of hints and tips that I’m sure you will find helpful.

Some books can be very hard going: pages and pages of detail - most of which you
forget as soon as you turn to the next page, or when you fall asleep. We do things
differently here. No getting bored reading page after page - you’ll have a series of
activities to carry out that are designed to reinforce what you’ve read on the page.
And unlike most other books that seem to forget about any tasks they have set you,
you’ll find a full set of answers to the activities at the end of each chapter.

Enjoy your journey through this book.

Acknowledgements

I’d like to thank Lee Bamber, Paul Johnston and Mike Johnson from The Game
Creators for all their help and guidance, Also, thanks to John McKay for his patience
and forbearance in testing every example included in the book. As usual, Virginia
Marshall did her best to rid the book of any grammar or spelling problems.

As always, any errors remaining are entirely my own.

I am always happy to receive any helpful suggestions on how to improve the book or
- heaven forbid - details of any errors you’ve found.

Contact me at alistair@digital-skills.co.uk.

Alistair Stewart June 2012

Hands On AGK BASIC: Foreword xv

Second Edition

It’s an almost impossible task to write an up-to-date book on a language that changes
as rapidly as AGK. Until now we’ve published updates and extra chapters to extend
the original Hands On AGK BASIC to deal with the many changes and additions of
AGK version 1, but now, with AGK version 2 and another swathe of additional and
updated commands, I’ve taken this opportunity revamp the whole book.

The main change is that the publication has now been split into two volumes, with
the more advanced topics such as 3D and networking commands moved to the second
volume. But I’ve also taken the opportunity to make minor corrections to retained
text and to check that the sample programs run correctly on the latest version of
AGK.

As always, please feel free to email me with any useful suggestions or corrections.

Alistair Stewart April 2014

xvi Hands On AGK BASIC: Foreword

How to Get the Most Out of this Book
Is learning the basics of computer programming difficult? No, but you do have to put
in the effort. Despite other publications promising to have you expert in a day, or a
week, I’m sure you’re smart enough to know that’s not going to happen. So, let’s get
real: you’ll learn how to program using AGK if you put in the work, take your time
to make sure you understand something before moving on, and practice, practice,
practice.

We’ve tried to keep things interesting by giving you plenty of practical work to do as
you journey through this book, but feel free to try out your own projects as well.

The first chapter is the only one in which you won’t need your computer since it
concentrates on the basic concepts behind all computer programming. You can, if
you wish, work on the second chapter at the same time as you read through Chapter
1. That way, you’ll be able to start programming right away.

Take your time with each chapter. Make sure you do each of the activities: they are
there to give you a deeper understanding as well as to keep you actively involved.
Since most activities require you to create a program, the computer will let you know
if you’ve got it right, but you should still take the time to look at the activity’s
solution given at the end of the chapter. The solution given may differ from your own
but it’s always of use to see how others tackle the same problem.

Don’t be afraid to reread a section or a whole chapter - it’s the second or third reading
of something new that finally gets the information across to most people.

If you are already a seasoned programmer you will be able to skip through much of
the early chapters. If you have programmed in DarkBASIC before, many of the core
statements in AGK are identical to that earlier language, but look out for a few subtle
differences such as the lack of READ and DATA statements and the method used to
initialise arrays.

The Files for the Book

Many of the programming activities (particularly in later chapters) make use of other
resources such as images, sounds, and 3D models. You can download the necessary
files from

 www.digital-skills.co.uk/downloads/AGK2Downloads.zip

Hands On AGK BASIC: Algorithms 1

Algorithms

In this Chapter:

T Understanding Algorithms

T Creating Algorithms

T Control Structures

T Boolean Expressions

T Data Types

T Stepwise Refinement

T The Need for Testing

2 Hands On AGK BASIC: Algorithms

Designing Algorithms

Following Instructions

Congratulations! You’ve just become a human computer. You were given a set of
instructions which you have carried out (by the way, did you think of the colour
grey?).

That’s exactly what a computer does. You give it a set of instructions, the machine
carries out those instructions, and that is ALL a computer does. If some computers
seem to be able to do amazing things, that is only because someone has written an
amazingly clever set of instructions. A set of instructions designed to perform some
specific task (like that in Activity 1.1) is known as an algorithm.

A clear and concise algorithm should have the following characteristics:

± One instruction per line

± Each instruction is unambiguous

± Each instruction is as brief as possible

As you can see, there are at least two ways to solve the problem given in Activity 1.2.
Is one better than the other? Well, if we start by filling container A, the solution needs
less instructions, so that might be a good guideline at this point when choosing which
algorithm is best.

However, the algorithms that a computer carries out are not written in English like

Activity 1.1

Carry out the following set of instructions in your head.

 Think of a number between 1 and 10
 Multiply that number by 9
 Add up the individual digits of this new number
 Subtract 5 from this total
 Think of the letter at that position in the alphabet
 Think of a country in Europe that starts with that letter
 Think of a mammal that starts with the second letter of the country’s name
 Think of the colour of that mammal

A B

Activity 1.2

This time let’s see if you can devise your own algorithm.

The task you need to solve is to measure out exactly 4 litres of water. You
have two containers. Container A, if filled, will hold exactly 5 litres of water,
while container B will hold 3 litres of water. You have an unlimited supply of
water and a drain to get rid of any water you no longer need. It is not possible
to know how much water is in a container if you only partly fill it from the
supply.

If you manage to come up with a solution, see if you can find a second way of
measuring out the 4 litres.

Hands On AGK BASIC: Algorithms 3

the instructions shown above, but in a more stylised form using a computer
programming language. AGK BASIC is one such language. The set of program
language instructions which make up each algorithm is then known as a computer
program or software.

Just as we may perform a great diversity of tasks by following different sets of
instructions, so the computer can be made to carry out any task for which a program
exists.

Computer programs are normally copied (or loaded) from a disk into the computer’s
memory and then executed (or run). Execution of a program involves the computer
performing each instruction in the program one after the other. This it does at
impressively high rates, possibly exceeding 160,000 million (or 160 billion)
instructions per second (160,000 mips).

Depending on the program being run, the computer may act as a word processor, a
database, a spreadsheet, a game, a musical instrument or one of many other
possibilities. Of course, as a programmer, you are required to design and write
computer programs rather than use them. And, more specifically, our programs in this
text will be mainly multimedia and game oriented, an area of programming for which
AGK has been specifically designed.

Control Structures
Although writing algorithms and programming computers can be complicated tasks,
there are only a few basic concepts and statements which you need to master before
you are ready to start producing software. Luckily, many of these concepts are
already familiar to you in everyday situations. If you examine any algorithm, no
matter how complex, you will find it consists of only three basic structures:

± Sequence where one instruction follows on from another.

± Selection where a choice is made between two or more alternative
 actions.

± Iteration where one or more instructions are carried out over and
 over again.

These structures are explained in detail over the next few pages. All that is needed is
to formalise how they are used within an algorithm. This formalisation better matches
the structure of a computer program.

Sequence

A set of instructions designed to be carried out one after another, beginning at the first
and continuing, without omitting any, until the final instruction is completed, is
known as a sequence. For example, instructions on how to perform an everyday task
such as plant a bush in the garden would be:

Activity 1.3

a) A set of instructions that performs a specific task is known as what?

b) What term is used to describe a set of instructions used by a computer?

c) The speed of a computer is measured in what units?

A traditional disk
makes use of a
magnetic surface to
record information.
More recent designs
use solid state
memory.

4 Hands On AGK BASIC: Algorithms

 Choose spot for planting
 Dig hole
 Add fertiliser
 Place shrub in hole
	 Refill	hole

The set of instructions given earlier in Activity 1.1 is also an example of a sequence.

Selection
Binary Selection

Often a group of instructions in an algorithm should be carried out only when certain
circumstances arise. For example, if we were playing a simple game with a young
child in which we hide a sweet in one hand and allow the child to have the sweet only
if she can guess which hand the sweet is in, then we might explain the core idea with
an instruction such as

 Give the sweet to the child if the child guesses which hand the sweet is in

Notice that when we write a sentence containing the word IF, it consists of two main
components:

 a condition : the child guesses which hand the sweet is in
and
 a command : give the sweet to the child

A condition (also known as a Boolean expression) is a statement that is either true
or false in a given situation. The command given in the statement is only carried out
if the condition is true at that particular moment and hence this type of instruction is
known as an IF statement and the command as a conditional instruction. Although
English would allow us to rewrite the above instruction in many different ways, when
we produce a set of formal instructions, as we are required to do when writing
algorithms, then we use a specific layout as shown in FIG-1.1, always beginning with
the word IF.

Activity 1.4

Re-arrange the following instructions to describe how to play a single shot
during a golf game:

 Swing club forwards, attempting to hit ball
 Take up correct stance beside ball
 Grip club correctly
 Swing club backwards
 Choose club

 condition

command

IF THEN

ENDIF

If condition
is true...

then command
is carried out

If condition is not true,
then command is ignored

FIG-1.1

The IF Statement

Note that there are
two alternative actions
in this structure:
to carry out the
command or to ignore
it.

Hands On AGK BASIC: Algorithms 5

Notice that the layout of this instruction makes use of three terms that are always
included. These are the words IF, which marks the beginning of the instruction;
THEN, which separates the condition from the command; and finally, ENDIF which
marks the end of the instruction.

The indentation of the command is important since it helps our eye grasp the structure
of our instructions. Appropriate indentation is particularly valuable in aiding
readability once an algorithm becomes long and complex. Using this layout, the
instruction for our game with the child would be written as:

 IF the child guesses which hand the sweet is in THEN
 Give the sweet to the child
 ENDIF

Sometimes, there will be several commands to be carried out when the condition
specified is met. For example, in the game of Scrabble we might describe a turn as:

 IF you can make a word THEN
 Add the word to the board
 Work out the points gained
 Add the points to your total
 Select more letter tiles
 ENDIF

Of course, the IF statement will almost certainly appear within a longer set of
instructions. For example, the instructions for playing our guessing game with the
young child may be given as:

 Hide a sweet in one hand
 Ask the child to guess which hand contains the sweet
 Wait for the child to reply
 IF the child guesses which hand the sweet is in THEN
 Give the sweet to the child
 ENDIF
 Ask the child if they would like to play again

This longer list of instructions highlights the usefulness of the term ENDIF in
separating the conditional command, Give the sweet to the child, from subsequent
unconditional instructions, in this case, Ask the child if they would like to play again.

The IF structure is also used in an extended form to offer a choice between two
alternative actions. This expanded form of the IF statement includes another formal
term, ELSE, and a second command. If the condition specified in the IF statement is
true, then the command following the term THEN is executed, otherwise the

Activity 1.5

A simple game involves two players. Player 1 thinks of a number between 1
and 100, then Player 2 makes a single attempt at guessing the number. Player 1
responds to a correct guess by saying Correct. If the guess is incorrect, Player 1
makes no response. The game is then complete and Player 1 states the value of
the number.

Write the set of instructions necessary to play the game. In your solution,
include the statements:

 Player 1 says “Correct”
 Player 1 thinks of a number
 IF guess matches number THEN

Note that this algorithm
does not explicitly say
what happens when the
child makes an incorrect
guess. This is because no
specific action needs to
be carried out when an
incorrect guess is made.

6 Hands On AGK BASIC: Algorithms

command following ELSE is carried out.

For instance, in our earlier example of playing a guessing game with a child, nothing
happened if the child guessed wrongly. If the person holding the sweet were to eat it
when the child’s guess was incorrect, we could describe this setup with the following
statement:

 IF the child guesses which hand the sweet is in THEN
 Give the sweet to the child
 ELSE
 Eat sweet yourself
 ENDIF

The general form of this extended IF statement is shown in FIG-1.2.

When we have several independent selections to make, then we may use several IF
statements. For example, when playing Monopoly, we may buy any unpurchased
property we land on. In addition, we get another turn if we throw a double. This part
of the game might be described using the following statements:

 Throw the dice
 Move your piece forward by the number indicated
 IF you land on an unsold property THEN
 Buy the property
 ENDIF
 IF you threw doubles THEN
 Throw the dice again
 ELSE
 Hand the dice to the next player
 ENDIF

Because this form of the IF statement (with or without the ELSE option) always

 condition

command 1

IF

ENDIF

THEN

ELSE

command 2

If condition
is true...

...then command1
is carried out

If condition
is false...

...then command2
is carried out

Activity 1.6

In the game of Hangman, one player has to guess the letters in a word known to
the second player. At the start of the game, player 2 draws one hyphen for each
letter in the word. When player 1 guesses a letter which is in the word, player
two writes the letter above the appropriate hyphen. When an incorrect letter is
guessed, player 2 draws a body part of a hanging man (there are 6 parts in the
simple drawing).

Write an IF statement containing an ELSE section which describes the
alternative actions to be taken by player 2 when player 1 guesses a letter.

In the solution include the statements:
 Add letter at appropriate position(s)
 Add part to hanged man

FIG-1.2

The IF..THEN..ELSE
Structure

Hands On AGK BASIC: Algorithms 7

offers two alternative actions, the structure is known as binary selection.

Multi-way Selection

Although a simple IF statement can be used to select one of two alternative actions,
sometimes we need to choose between more than two alternatives (known as multi-
way selection). For example, imagine that the rules of the simple guessing game
mentioned in Activity 1.5 are changed so that there are three possible responses to
Player 2’s guess; these being:

± Correct

± Too low

± Too high

One way to create an algorithm that describes this situation is just to employ three
separate IF statements:

 IF the guess is equal to the number you thought of THEN
 Say “Correct”
 ENDIF
 IF the guess is lower than the number you thought of THEN
 Say “Too low”
 ENDIF
 IF the guess is higher than the number you thought of THEN
 Say “Too high”
 ENDIF

This will work, but would not be considered a good design for an algorithm since,
when the first IF statement is true, we still go on and check if the conditions in the
second and third IF statements are true. Checking those last two statements would be
a waste of time since, if the first condition is true, the others cannot be and therefore
testing them serves no purpose. Where only one of the conditions being considered
can be true at a given moment in time, these conditions are known as mutually
exclusive conditions. The most effective way to deal with mutually exclusive
conditions is to check for one condition, and only if this is not true, do we bother to
examine the other conditions being tested. So, for example, in our algorithm for
guessing the number, we might begin by writing:

 IF guess matches number THEN
 Say “Correct”
 ELSE
 Check the other conditions
 ENDIF

Of course a statement like Check the other conditions is too vague to be much use in an
algorithm (hence the asterisks to emphasise the problem). But what are these other
conditions? They are the guess is lower than the number Player 1 thought of and the guess
is higher than the number Player 1 thought of.

We already know how to handle a situation where there are only two alternatives: use
an IF statement. So selecting between Too low and Too high requires the statement

 IF guess is less than number THEN
 Say “Too low”
 ELSE
 Say “Too high”
 ENDIF

8 Hands On AGK BASIC: Algorithms

Now, by replacing the phrase ***Check the other conditions*** in our original algorithm
with our new IF statement we get:

 IF guess matches number THEN
 Say “Correct”
 ELSE
 IF guess is less than number THEN
 Say ”Too low”
 ELSE
 Say “Too high”
 ENDIF
 ENDIF

Notice that the second IF statement is now totally contained within the ELSE section
of the first IF statement. This situation is known as nested IF statements. Where
there are even more mutually exclusive alternatives, several IF statements may be
nested in this way. However, in most cases, we’re not likely to need more than two
nested IF statements.

As you can see from the solution to Activity 1.7, although nested IF statements get
the job done, the general structure can be rather difficult to follow. A better method
would be to change the format of the IF statement so that several, mutually exclusive,
conditions can be declared in a single IF statement along with the action required for
each of these conditions. This would allow us to rewrite the solution to Activity 1.7
as:

 IF
 crossbow is too high: Say “Down a bit”
 crossbow is too low: Say “Up a bit”
 crossbow is too far right: Say “Left a bit”
 crossbow is too far left: Say “ Right a bit”
 crossbow is on target: Say “Fire”
 ENDIF

Each option is explicitly named (ending with a colon) and only the one which is true
will be carried out, the others will be ignored.

Of course, we are not limited to merely five options; there can be as many as the
situation requires.

When producing a program for a computer, all possibilities have to be taken into
account. Early adventure games, which were text based, allowed the player to type a
command such as Go East, Go West, Go North, Go South and this moved the player’s
character to new positions in the imaginary world of the computer program. If the

Activity 1.7

In an old TV programme called The Golden Shot, contestants had to direct a
crossbow in order to shoot an apple. The player sat at home and directed the
crossbow controller via the phone. Directions were limited to the following
phrases: up a bit, down a bit, left a bit, right a bit, and fire.

Write a set of nested IF statements that determine which of the above
statements should be issued.

Use statements such as:
 IF the crossbow is pointing too high THEN
 and
 Say “Left a bit”

Hands On AGK BASIC: Algorithms 9

player typed in an unrecognised command such as Go North-East or Move faster,
then the game would issue an error message. This setup can be described by adding
an ELSE section to the structure as shown below:

 IF
 command is Go East:
 Move player’s character eastward
 command is Go West:
 Move player’s character westward
 command is Go North:
 Move player’s character northward
 command is Go South:
 Move player’s character southward
 ELSE
 Display an error message
 ENDIF

The additional ELSE option will be chosen only if none of the other options are
applicable. In other words, it acts like a catch-all, handling all the possibilities not
explicitly mentioned in the earlier conditions.

This gives us the final form of this style of the IF statement as shown in FIG-1.3.
FIG-1.3

The Multi-Way IF
Structure

IF

ENDIF

ELSE

...then command1
is carried out

If condition1
is true... condition1 :

command1

 condition2 :
command2

 condition3 :
command3

If condition2
is true...

...then command2
is carried out

as many conditions
and correponding

commands as necessary
can be inserted

...then command3
is carried out

If condition3
is true...

command
If none of the

previous conditions are
true, then this command

is carried out

Activity 1.8

In the TV game Wheel of Fortune (where you have to guess a well-known
phrase), you can, on your turn, either guess a consonant, buy a vowel, or make
a guess at the whole phrase.

If you know the phrase, you should make a guess at what it is; if there are still
many unseen letters, you should guess a consonant; as a last resort you can buy
a vowel.

Write an IF statement in the style given above describing how to choose from
the three options.

10 Hands On AGK BASIC: Algorithms

Complex Conditions

Often the condition given in an IF statement may be a complex one. For example, in
the TV game Family Fortunes, you only win the star prize if you get 200 points and
guess the most popular answers to a series of questions. This can be described in our
more formal style as:

IF at least 200 points gained AND all most popular answers have been guessed
THEN
 winning team get the star prize
ENDIF

The AND Operator

Note the use of the word AND in the above example. AND (called a Boolean
operator) is one of the terms used to link simple conditions in order to produce a
more complex one (known as a complex condition).

The conditions on either side of the AND are called the operands. Both operands
must be true for the overall result to be true. We can generalise this to describe the
AND operator as being used in the form:

 condition 1 AND condition 2

The result of the AND operator is determined using the following rules:

1. Determine the truth of condition 1
2. Determine the truth of condition 2
3. IF both conditions are true THEN
 the overall result is true
 ELSE
 the overall result is false
 ENDIF

For example, if a proximity light comes on when it’s dark and it detects motion then
we can describe the logic of the equipment as:

 IF it’s dark AND motion has been detected THEN
 Switch on light
 ENDIF

Now, if we assume that at a particular moment in time it’s dark but no motion has
been detected then the above statement would be dealt with in the manner shown in
FIG-1.4.

FIG-1.4

The AND Operator

The first condition is tested to
determine if it is true or false. In this
case, that condition is true

The second condition is false (since no
motion has been detected).

it’s dark
The condition

is true motion has been detected

This condition
is false

Hands On AGK BASIC: Algorithms 11

With two conditions there are four possible combinations. The first possibility is that
both conditions are false; another possibility is that condition 1 is false but condition
2 is true, etc.

All possibilities of the AND operator are summarised in FIG-1.5.

The OR Operator
Simple conditions may also be linked by the Boolean OR operator. Using OR, only
one of the two conditions specified needs to be true in order to carry out the action
that follows. For example, in the game of Monopoly you go to jail if you land on the
Go To Jail square or if you throw three doubles in a row. This can be written as:

 IF player landed on Go To Jail OR player has thrown 3 pairs in a row THEN
 Move player to jail
 ENDIF

Like AND, the OR operator works on two operands:

Activity 1.9

What are the other possible combinations for the two conditions?

Activity 1.10

In Microsoft Windows applications, the program will request the name of the
file to be opened if the Ctrl and O keys are pressed together.

Write an IF statement, which includes the term AND, summarising this
situation.

 condition 1 condition 2 condition 1 AND condition 2

 false false false
false true false
true false false
true true true

FIG-1.5

The AND Truthtable

Note that the result is
true only when both
conditions are true.

Substituting these results in the
original statement we have...

Since both conditions are not true, we
get an overall result of false, the
command Switch on light is not
executed.

IF true AND false THEN
 Switch on light
ENDIF IF false THEN

 Switch on light
ENDIF ...command not

executed

The compound
condition’s final value

is false so...

FIG-1.4
(continued)

The AND Operator

12 Hands On AGK BASIC: Algorithms

 condition 1 OR condition 2

When OR is used, only one of the conditions involved needs to be true for the overall
result to be true. Hence the results are determined by the following rules:

1. Determine the truth of condition 1
2. Determine the truth of condition 2
3. IF any of the conditions are true THEN
 the overall result is true
 ELSE
 the overall result is false
 ENDIF

For example, if a player in the game of Monopoly has not landed on the Go To Jail
square, but has thrown three consecutive pairs, then the result of the IF statement
given above would be determined as shown in FIG-1.6.

The results of the OR operator are summarised in FIG-1.7.

The NOT Operator
The final Boolean operator which can be used as part of a condition is NOT. This
operator is used to reverse the meaning of a condition. Hence, if it’s dark is true, then
NOT it’s dark is false. In fact, you can usually get away with just testing for the
opposite condition rather than using NOT. For example, rather than write NOT it’s
dark (which isn’t exactly regular English), you can write it’s light - assuming light
and dark are the only two options. Where there are many options to choose from, then

FIG-1.6

The OR Operator

The first condition is false, but the
second is true.

So the the original condition becomes
false OR true which reduces further to
true and hence the player goes to jail.

player landed on Go to Jail

player thrown 3 pairs in a row

false

true

IF false OR true THEN
 Move player to jail
ENDIF

IF true THEN
 Move player to jail
ENDIF

Command
executed

FIG-1.7

The OR Truthtable

Activity 1.11

In Monopoly, a player can get out of jail if he throws a double or pays a £50
fine.

Express this information in an IF statement which makes use of the OR
operator.

 condition 1 condition 2 condition 1 OR condition 2

 false false false
false true true
true false true
true true true

Hands On AGK BASIC: Algorithms 13

using NOT can make things a lot easier. It’s a whole lot simpler to write something
like

 NOT day is Monday

than have to write

 day is Tuesday OR day is Wednesday OR day is Thursday, etc.

Notice that the word NOT is always placed at the start of the condition and not where
it would appear in everyday English (day is NOT Monday).

The NOT operator works on a single operand:

 NOT condition

When NOT is used, the result given by the original condition (the bit without the
NOT) is reversed. Hence the results are determined by the following rules:

1. Determine the truth of the original condition
2. Complement the result obtained in step 1

For example, if a player lands on a property that is not mortgaged, then the result of
the IF statement given above would be determined as shown in FIG-1.8.

The results of the NOT operator are summarised in FIG-1.9.

 day is Monday IF THENNOT

 false IF THENNOT

 true IF THEN

Assuming it’s
Friday, then ...

this condition ...

is false ...

and NOT false
gives true

FIG-1.8

The NOT Operator

 condition NOT condition

 false true
true false

FIG-1.9

The NOT Truthtable

Activity 1.12

a) Name the three types of control structures.
b) Another term for condition is what?
c) Name the two types of selection.
d) What does the term mutually exclusive conditions mean?
e) Give an example of a Boolean operator.
f) What is a conditional statement?
g) If two conditions are linked using the term AND, how many of the
 conditions must be true before the conditional statement is executed?

14 Hands On AGK BASIC: Algorithms

Iteration
There are certain circumstances in which it is necessary to perform the same sequence
of instructions several times. For example, let’s assume that a game involves throwing
a dice three times and adding up the total of the values thrown. We could write
instructions for such a game as follows:

 Set the total to zero
 Throw dice
 Add dice value to total
 Throw dice
 Add dice value to total
 Throw dice
 Add dice value to total
 Call out the value of total

You can see from the above that two instructions,

 Throw dice
 Add dice value to total

are carried out three times, once for each turn taken by the player. Not only does it
seem rather time-consuming to have to write the same pair of instructions three
times, but it would be even worse if the player had to throw the dice 10 times!

What is required is a way of showing that a section of the instructions is to be repeated
a fixed number of times. Carrying out one or more statements over and over again is
known as looping or iteration. The statement or statements we want to perform over
and over again are known as the loop body.

FOR..ENDFOR

When writing a formal algorithm in which we wish to repeat a set of statements a
specific number of times, we use a FOR..ENDFOR structure. There are three separate
parts to this structure. The first of these is placed just before the loop body and in it
we state how often we want the statements in the loop body to be carried out. For the
dice problem our statement would be:

 FOR 3 times DO

Generalising, we can say this statement takes the form

 FOR value times DO

where value would be some positive number.

Next come the statements that make up the loop body. These are indented:

 FOR 3 times DO
 Throw dice
 Add dice value to total

Finally, to mark the fact that we have reached the end of the loop body statements we

Activity 1.13

What statements make up the loop body in our dice problem given above?

Hands On AGK BASIC: Algorithms 15

add the word ENDFOR:

 FOR 3 times DO
 Throw dice
 Add dice value to total
 ENDFOR

Now we can rewrite our original algorithm as:

 Set the total to zero
 FOR 3 times DO
 Throw dice
 Add dice value to total
 ENDFOR
 Call out the value of total

The instructions between the terms FOR and ENDFOR are now carried out three
times.

We are free to place any statements we wish within the loop body. For example, the
last version of our number guessing game produced the following algorithm:

 Player 1 thinks of a number between 1 and 100
 Player 2 makes an attempt at guessing the number
 IF guess matches number THEN
 Player 1 says “Correct”
 ELSE
 IF guess is less than number THEN
 Player 1 says “Too low”
 ELSE
 Player 1 says “Too high”
 ENDIF
 ENDIF

player 2 would have more chance of winning if he were allowed several chances at
guessing player 1’s number. To allow several attempts at guessing the number, some
of the statements given above would have to be repeated.

To allow for 7 attempts our new algorithm becomes:

 Player 1 thinks of a number between 1 and 100
 FOR 7 times DO
 Player 2 makes an attempt at guessing the number
 IF guess matches number THEN
 Player 1 says “Correct”
 ELSE
 IF guess is less than number THEN
 Player 1 says “Too low”
 ELSE
 Player 1 says “Too high”

Note that ENDFOR
is left-aligned with
the opening FOR
statement.

Activity 1.14

If the player was required to throw the dice 10 times rather than 3, what
changes would we need to make to the algorithm?

If the player was required to call out the average of these 10 numbers, rather
than the total, show what other changes are required to the set of instructions.

You can find the
average of the 10
numbers by dividing
the final total by 10.

Activity 1.15

What statements in the algorithm above need to be repeated?

16 Hands On AGK BASIC: Algorithms

 ENDIF
 ENDIF
 ENDFOR

Occasionally, we may have to use a slightly different version of the FOR loop.
Imagine we are trying to write an algorithm explaining how to decide who goes first
in a game. In this game every player throws a dice and the player who throws the
highest value goes first. To describe this activity we know that each player does the
following task:

 Player throws dice

But since we can’t know in advance how many players there will be, we write the
algorithm using the statement

 FOR every player DO

to give the following algorithm

 FOR every player DO
 Throw dice
 ENDFOR
	 Player	with	highest	throw	goes	first

If we had to save the details of a game of chess with the intention of going back to
the game later, we might write:

FOR each piece on the board DO
 Write down the name and position of the piece
ENDFOR

Activity 1.17

During a lottery draw, two actions are performed exactly 6 times. These are:
 Pick out ball
 Call out number on the ball

Add a FOR loop to the above statements to create an algorithm for the lottery
draw process.

Activity 1.16

Can you see a flaw in the algorithm?

If not, try playing the game a few times, playing exactly according to the
instructions in the algorithm.

Activity 1.18

A game uses cards with images of warriors. At one point in the game the player
has to remove from his hand every card with an image of a knight. To do this
the player must look through every card and, if it is a knight, remove the card.

Write down a set of instructions which performs the task described above. Your
solution should include the statements

 FOR every card in player’s hand DO and IF card is a knight THEN

Hands On AGK BASIC: Algorithms 17

The general form of the FOR statement is shown in FIG-1.10.

Although the FOR loop allows us to perform a set of statements a specific number of
times, this statement is not always suitable for the problem we are trying to solve.

For example, in the guessing game of Activity 1.15 we stated that the loop body was
to be performed 7 times, but what if player 2 guesses the number after only three
attempts? If we were to follow the algorithm exactly (as a computer would), then we
must make four more guesses at the number even after we know the correct answer!

To solve this problem, we need another way of expressing looping which does not
commit us to a specific number of iterations.

REPEAT.. UNTIL

The REPEAT .. UNTIL statement allows us to specify that a set of statements should
be repeated until some condition becomes true, at which point iteration should cease.

The word REPEAT is placed at the start of the loop body and, at its end, we add the
UNTIL statement. The UNTIL statement also contains a condition, which, when true,
causes iteration to stop. This is known as the terminating (or exit) condition. For
example, we could use the REPEAT.. UNTIL structure rather than the FOR loop in
our guessing game algorithm. The new version would then be:

 Player 1 thinks of a number between 1 and 100
 REPEAT
 Player 2 makes an attempt at guessing the number
 IF guess matches number THEN
 Player 1 says “Correct”
 ELSE
 IF guess is less than number THEN
 Player 1 says “Too low”
 ELSE
 Player 1 says “Too high”
 ENDIF
 ENDIF
 UNTIL player 2 guesses correctly

We could also use the REPEAT..UNTIL loop to describe how a slot machine (one-
armed bandit) is played:

 REPEAT
 Put coin in machine
 Pull handle
 IF you win THEN
 Collect winnings
 ENDIF
 UNTIL you want to stop

FOR expression DO

 loop body

ENDFOR

Speci�es the
number of times
loop body is to

be executedThe
commands to
be carried out

The end
of the FOR

loop

Typical
expressions:

5 times
every item

FIG-1.10

The FOR..ENDFOR
Loop

18 Hands On AGK BASIC: Algorithms

The general form of this structure is shown in FIG-1.11.

The terminating condition may use the Boolean operators AND, OR and NOT as well
as parentheses, where necessary.

Returning to the number guessing game on the previous page, there is still a problem.
By using a REPEAT .. UNTIL loop we are allowing player 2 to have as many guesses
as needed to determine the correct number. That doesn’t lead to a very interesting
game. Later we’ll discover how we might solve this problem.

WHILE.. ENDWHILE

A final method of iteration, differing only subtly from the REPEAT.. UNTIL loop, is
the WHILE .. ENDWHILE structure which has an entry condition at the start of the
loop. The following example illustrates the usefulness of this new structure.

The aim of the card game of Pontoon is to attempt to make the value of your cards
add up to 21 without going over that value. Each player is dealt two cards initially
but can repeatedly ask for more cards by saying “twist”. One player is designated the
dealer. The dealer must twist while his cards have a total value of less than 16. So we
might write the rules for the dealer as:

 Calculate the sum of the initial two cards
 REPEAT
 Take another card
 Add new card’s value to sum
 UNTIL sum is greater than or equal to 16

But there’s a problem with the solution: if the sum of the first two cards is already 16
or above, we still need to take a third card (just work through the logic, if you can’t
see why). By using the WHILE..ENDWHILE structure we could describe the logic
as

 Calculate sum of the initial two cards
 WHILE sum is less than 16 DO
 Take another card
 Add new card’s value to sum
 ENDWHILE

FIG-1.11

The REPEAT..UNTIL
Loop

REPEAT

 loop body

UNTIL condition

Start of
loop

Looping
continues until

condition is
true

The
commands to
be carried out

Activity 1.19

Confronted with a pile of unordered books when looking for a specific
publication, the only way to find the desired title is to examine each book in
turn until the required one is found. Of course, there’s a possibility that the
book is not in the pile.

Using REPEAT..UNTIL, write the logic required to search for the book.

Hands On AGK BASIC: Algorithms 19

Now determining if the sum is less than 16 is performed before the Take another card
instruction. If the dealer’s two cards already add up to 16 or more, then the Take
another card instruction will be ignored.

The general form of the WHILE.. ENDWHILE statement is shown in FIG-1.12.

In what way does this differ from the REPEAT statement? There are two differences:

± The condition is given at the beginning of the loop.

± Looping stops when the condition is false.

The main consequence of this is that it is possible to bypass the loop body of a
WHILE structure entirely without ever carrying out any of the instructions it contains.

On the other hand, the loop body of a REPEAT structure will always be executed at
least once.

Infinite Loops

If a loop can never exit, it is known as an infinite loop. As a general rule, infinite
loops are caused by some error in the logic. For example, the algorithm

WHILE condition

 loop body

ENDWHILE

Start of
loop

Looping
continues while

condition is
true

The
commands to
be carried out

FIG-1.12

The WHILE..
ENDWHILE Loop

Activity 1.20

A game involves throwing two dice. If the two values thrown are not the same,
then the dice showing the lower value must be rolled again. This process is
continued until both dice show the same value.

Write a set of instructions to perform this game.

Your solution should contain the statements

 Roll both dice
and Choose dice with lower value

Activity 1.21

a) What is the meaning of the term iteration?
b) Name the three types of looping structures.
c) What type of loop structure should be used when looping needs to
 occur an exact number of times?
d) What type of loop structure can bypass its loop body without ever
 executing it?
e) What type of loop contains an exit condition?

20 Hands On AGK BASIC: Algorithms

 Think of a number
 REPEAT
 Subtract 1 from the number
 UNTIL the number is zero

will never be completed if the number you start with is already zero or less.

Data
We know we need to retain information. Look at your phone; packed with names,
email addresses, phone numbers, and much more. Even when playing an old-
fashioned board game we need to remember things such as the number you threw on
the dice, where your piece is on the board and so on. These examples introduce the
need to process facts and figures (known as data).

Every item of data has two basic characteristics :

 a name
 and a value

The name of a data item is a description of the type of information it represents.
Hence on a form we might see boxes labelled as Forename, Surname, Address,
Phone No, etc. These are the data names. And, when we’ve completed the form, the
boxes will contain the values we have entered. These entries are the data values. In
programming, a data item is often referred to as a variable. This term arises from the
fact that, although the name assigned to a data item cannot change, its value may
vary. For example, the value assigned to a variable called salary may rise (or fall)
over weeks, months or years.

Types of Data

Most computer programming languages need to be told what type of value is to be
held in a variable - for example, it needs to know if a variable will hold a number or
a message. Once the variable is set up for one type of value, it can’t be used to hold
any other type. Three of the basic data types recognised by a language such as AGK
BASIC are:

 integer holds whole numbers only (eg -12, 0, 92).

 real (also known as floating point numbers) holds numbers
 containing fractions (-14.6, 0.005, 176.0)
 - notice that the fraction part may be .0.

 string holds zero or more characters. A character may be
 alphabetic, numeric, or punctuation marks (A, 7, *).

Other data types are possible, but we’ll look at these in a later chapter.

Operations on Data

There are four basic operations that a computer can do with data. These are:

Input

This involves being given a value for a data item. For example, in our number-
guessing game, the player who has thought of the original number is given the value

Hands On AGK BASIC: Algorithms 21

of the guess from the second player. When playing Noughts and Crosses adding an
X (or O) changes the set up on the board. When using a computer, any value entered
at the keyboard, or any movement or action dictated by a mouse or joystick would be
considered as data entry. This type of action is known as an input operation.

Calculation

Most games involve some basic arithmetic. In Monopoly, the banker has to work out
how much change to give a player buying a property. If a character in an adventure
game is hit, points must be deducted from his strength value. This type of instruction
is referred to as a calculation operation.

Comparison

Often values have to be compared. For example, we need to compare the two numbers
in our guessing game to find out if they are the same. This is known as a comparison
operation.

Output

The final requirement is to communicate with others to give the result of some
calculation or comparison. For example, in the guessing game, player 1 communicates
with player 2 by saying either that the guess is Correct, Too high or Too low.

In a computer environment, the equivalent operation would normally involve
displaying information on a screen or printing it on paper. For instance, in a racing
game your speed and time will be displayed on the screen. This is called an output
operation.

When describing a calculation, it is common to use arithmetic operator symbols
rather than English. Hence, instead of writing the word subtract we use the minus
sign (-). However, programming languages use a slightly different set of symbols
than standard mathematics (see FIG-1.13).

Similarly, when we need to compare values, rather than use terms such as is less than,
we use the less than symbol (<). A summary of these relational operators is given in
FIG-1.14.

As well as replacing the words used for arithmetic calculations and comparisons with

 English Symbol

Multiply *
Divide /
Add +
Subtract -

FIG-1.13

The Arithmetic
Operators

FIG-1.14

The Relational
Operators

 English Symbol

is less than <
is less than or equal to <=
is greater than >
is greater than or equal to >=
is equal to =
is not equal to <>

22 Hands On AGK BASIC: Algorithms

symbols, the term calculate or set is often replaced by the shorter but more cryptic
symbol -> between the variable being assigned a value and the value itself. Using
this abbreviated form, the instruction:

 Calculate time to complete course as distance divided by speed

becomes

 time -> distance / speed

Although the long-winded English form is more readable, this more cryptic style is
briefer and is much closer to the code used when programming a computer.

Below we compare the two methods of describing our guessing game; first in English:

 Player 1 thinks of a number between 1 and 100
 REPEAT
 Player 2 makes an attempt at guessing the number
 IF guess matches number THEN
 Player 1 says “Correct”
 ELSE
 IF guess is less than number THEN
 Player 1 says ”Too low”

 ELSE
 Player 1 says “Too high”
 ENDIF
 ENDIF
 UNTIL player 2 guesses correctly

 Using some of the symbols described earlier, we can rewrite this as:

 Player 1 thinks of a number between 1 and 100
 REPEAT
 Player 2 makes an attempt at guessing the number
 IF guess = number THEN
 Player 1 says “Correct”
 ELSE
 IF guess < number THEN
 Player 1 says ”Too low”
 ELSE
 Player 1 says “Too high”
 ENDIF
 ENDIF
 UNTIL guess = number

Levels of Detail
When we start to write an algorithm in English, one of the things we need to consider
is exactly how much detail should be included. For example, we might describe how
to record a video on a digital camcorder as:

 Insert memory stick
 Choose appropriate recording settings

Activity 1.22

a) What are the two main characteristics of any data item?
b) When data is input, from where is its value obtained?
c) Give an example of a relational operator.

Hands On AGK BASIC: Algorithms 23

However, this lacks enough detail for anyone unfamiliar with the operation of the
machine. Therefore, we could replace the first statement with:

	 Open	the	flap	covering	the	memory	chip	slot
 IF there is a chip already in the slot THEN
 Remove it
 ENDIF
 Place the new memory stick in slot
	 Close	flap

and the second statement could be substituted by:

 Set recording quality
 Set exposure to automatic
 Set focus to automatic

This approach of starting with a less detailed sequence of instructions and then,
where necessary, replacing each of these with more detailed instructions can be used
to good effect when tackling long and complex problems. By using this technique,
we are defining the original problem as an equivalent sequence of simpler problems
before going on to create a set of instructions to handle each of these simpler
problems. This divide-and-conquer strategy is known as stepwise refinement. The
following is a fully worked example of this technique:

Problem:
 Describe how to make a cup of tea.

Outline Solution:

 1. Fill kettle
 2. Boil water
 3. Put tea bag in teapot
 4. Add boiling water to teapot
 5. Wait 1 minute
 6. Pour tea into cup
 7. Add milk and sugar to taste

This is termed a LEVEL 1 solution.

As a guideline we should aim for a LEVEL 1 solution with between 5 and 12
instructions. Notice that each instruction has been numbered. This is merely to help
with identification during the stepwise refinement process.

Before going any further, we must assure ourselves that this is a correct and full
(though not detailed) description of all the steps required to tackle the original
problem. If we are not happy with the solution, then changes must be made before
going any further.

Next, we examine each statement in turn and determine if it should be described in
more detail. Where this is necessary, rewrite the statement to be dealt with, and below
it, give the more detailed version. For example. Fill kettle would be expanded thus:

 1. Fill kettle
 1.1 Remove kettle lid
 1.2 Put kettle under tap
 1.3 Turn on tap
 1.4 When kettle is full, turn off tap
 1.5 Replace lid on kettle

The numbering of the new statement reflects that they are the detailed instructions

24 Hands On AGK BASIC: Algorithms

pertaining to statement 1. Also note that the number system is not a decimal fraction,
so if there were to be many more statements they would be numbered 1.6, 1.7, 1.8,
1.9, 1.10, 1.11, etc.

It is important that these sets of more detailed instructions describe how to perform
only the original task being examined - they must achieve no more and no less.
Sometimes the detailed instructions will contain control structures such as IFs,
WHILEs or FORs. Where this is the case, the whole structure must be included in the
detailed instructions for that task. Having satisfied ourselves that the breakdown is
correct, we proceed to the next statement from the original solution.

 2. Boil water
 2.1 Plug in kettle
 2.2 Switch on power at socket
 2.3 Switch on power at kettle
 2.4 When water boils switch off kettle

The next two statements expand as follows:

 3. Put tea bag in teapot
 3.1 Remove lid from teapot
 3.2 Add tea bag to teapot
 4. Add boiling water to teapot
 4.1 Take kettle over to teapot
 4.2 Add required quantity of water from kettle to teapot

But not every statement from a level 1 solution needs to be expanded. In our case
there is no more detail to add to the statement

 5. Wait 1 minute

and therefore, we leave it unchanged.

The last two statements expand as follows:

 6. Pour tea into cup
 6.1 Take teapot over to cup
 6.2 Pour required quantity of tea from teapot into cup

 7. Add milk and sugar as required
 7.1 IF milk is required THEN
 7.2 Add milk
 7.3 ENDIF
 7.4 IF sugar is required THEN
 7.5 Add sugar
 7.6 Stir tea
 7.7 ENDIF

Notice that this last expansion (step 7) has introduced IF statements. Control
structures (i.e. IF, WHILE, FOR, etc.) can be introduced at any point in an algorithm.

Finally, we can describe the solution to the original problem in more detail by
substituting the statements in our LEVEL 1 solution by their more detailed equivalent:

 1.1 Remove kettle lid
 1.2 Put kettle under tap
 1.3 Turn on tap
 1.4 When kettle is full, turn off tap
 1.5 Place lid back on kettle
 2.1 Plug in kettle
 2.2 Switch on power at socket
 2.3 Switch on power at kettle

Hands On AGK BASIC: Algorithms 25

 2.4 When water boils switch off kettle
 3.1 Remove lid from teapot
 3.2 Add tea bag to teapot
 4.1 Take kettle over to teapot
 4.2 Add required quantity of water from kettle to teapot
 5. Wait 1 minute
 6.1 Take teapot over to cup
 6.2 Pour required quantity of tea from teapot into cup
 7.1 IF milk is required THEN
 7.2 Add milk
 7.3 ENDIF
 7.4 IF sugar is required THEN
 7.5 Add sugar
 7.6 Stir tea
 7.7 ENDIF

This is a LEVEL 2 solution. Note that a level 2 solution includes any LEVEL 1
statements which were not given more detail (in this case, Wait 1 minute).

For some more complex problems it may be necessary to repeat this process to more
levels before sufficient detail is achieved. That is, statements in LEVEL 2 may be
given more detail in a LEVEL 3 breakdown.

Activity 1.23

The game of battleships involves two players. Each player draws two 10 by 10
grids. Each of these have columns lettered A to J and rows numbered 1 to 10.
In the first grid each player marks the position of warships. Ships are added as
follows:

 1 aircraft carrier 4 squares
 2 destroyers 3 squares each
 3 cruisers 2 squares each
 4 submarines 1 square each

The squares of each ship must be adjacent and must be vertical or horizontal.
The first player now calls out a grid reference.

The second player responds to the call by saying HIT or MISS. HIT is called if
the grid reference corresponds to a position of a ship. The first player then
marks this result on his second grid using an o to signify a miss and x for a hit
(see diagram below).

 continued on next page

A B C D E F G H I J A B C D E F G H I J

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

A A A A

C C

C C

S

D

D

D

C

C

S

S

S

O

O

X X X

O

D D D

Vessels are positioned
in the left-hand grid

Results of guesses are
placed in the right-hand grid

26 Hands On AGK BASIC: Algorithms

Checking for Errors
Once we’ve created our algorithm we would like to make sure it is correct.
Unfortunately, there is no foolproof way to do this! But we can at least try to find any
errors or omissions in the set of instructions we have created.

We do this by going back to the original description of the task our algorithm is
attempting to solve. For example, let’s assume we want to check our number guessing

Activity 1.23 (continued)

If the first player achieves a HIT then he continues to call grid references until
MISS is called. In response to a HIT or MISS call the first player marks the
second grid at the reference called: 0 for a MISS, X for a HIT.

When the second player responds with MISS the first player’s turn is over, and
the second player has his turn.

The first player to eliminate all segments of the opponent’s ships is the winner.
However, each player must have an equal number of turns, and if both sets of
ships are eliminated in the same round the game is a draw.

The algorithm describing the task of one player is given in the instructions
below. Create a LEVEL 1 algorithm by assembling the lines in the correct order,
adding line numbers to the finished description.
 Add ships to left grid
 UNTIL there is a winner
 Call grid position(s)
 REPEAT
 Respond to other player’s call(s)
 Draw grids

To create a LEVEL 2 algorithm, some of the above lines will have to be
expanded to give more detail. More detailed instructions are given below for the
statements Call grid position(s) and Respond to other player’s call(s).

By reordering and numbering the lines below create LEVEL 2 details for these
two statements.

 UNTIL other player misses
 Mark position in second grid with X
 Get other player’s call
 Get reply
 Get reply
 ENDIF
 Call HIT
 Call MISS
 Mark position in second grid with 0
 WHILE reply is HIT DO
 Call grid reference
 Call grid reference
 IF other player’s call matches position of ship THEN
 ENDWHILE
 REPEAT
 ELSE

Hands On AGK BASIC: Algorithms 27

game algorithm. In the last version of the game we allowed the second player to make
as many guesses as required until he came up with the correct answer. The first player
responded to each guess by saying either “Too low”, “Too high” or “Correct”.

To check our algorithm for errors we must come up with typical values that might be
used when carrying out the set of instructions and those values should be chosen so
that each possible result is achieved at least once.

So, as well as making up values, we need to predict what response our algorithm
should give to each value used. Hence, if the first player thinks of the value 42 and
the second player guesses 75, then the first player will respond to the guess by saying
“Too high”.

Our set of test values must evoke each of the possible results from our algorithm. One
possible set of values and the responses are shown in FIG-1.15.

Once we’ve created test data, we need to work our way through the algorithm using
that test data and checking that we get the expected results. The algorithm for the
number game is shown below, this time with instruction numbers added.

1. Player 1 thinks of a number between 1 and 100
2. REPEAT
3. Player 2 makes an attempt at guessing the number
4. IF guess = number THEN
5. Player 1 says “Correct”
6. ELSE
7. IF guess < number THEN
8. Player 1 says “Too low”
9. ELSE
10. Player 1 says “Too high”
11. ENDIF
12. ENDIF
13. UNTIL guess = number

Next we create a new table (called a trace table) with the headings as shown in FIG-
1.16.

Now we work our way through the statements in the algorithm filling in a line of the
trace table for each instruction.

 Test Data Expected Results

number = 42
guess = 75 Says “Too high”
guess = 15 Says “Too low”
guess = 42 Says “Correct”

FIG-1.15

Test Data for the
Number Guessing Game
Algorithm

 Instruction Condition T/F Variables Output
number guess

Contains the number
of the instruction which

has been executed

Any condition contained in
the statement is written here

The result of the
condition is written

here as T or F

The value currently
stored in each variable

is given here
Any value displayed

(or spoken) is shown here

FIG-1.16

A Trace Table

28 Hands On AGK BASIC: Algorithms

Instruction 1 is for player 1 to think of a number. Using our test data, that number will
be 42, so our trace table starts with the line shown in FIG-1.17.

The REPEAT word comes next. Although this does not cause any changes,
nevertheless a 2 should be entered in the next line of our trace table. Instruction 3
involves player 2 making a guess at the number (this guess will be 75 according to
our test data). After 3 instructions our trace table is as shown in FIG-1.18.

Instruction 4 is an IF statement containing a condition. This condition and its result
are written into columns 2 and 3 as shown in FIG-1.19.

Because the condition is false, we now jump to instruction 6 (the ELSE line) and on
to 7. This is another IF statement and our table now becomes that shown in FIG-1.20.

Since this second IF statement is also false, we move on to statements 9 and 10.
Instruction 10 causes output (speech) and hence we enter this in the final column as
shown in FIG-1.21.

Now we move on to statements 11,12 and 13 as shown in FIG-1.22.

FIG-1.17

Working through a
Trace 1

 Instruction Condition T/F Variables Output

1 42

number guess

 Instruction Condition T/F Variables Output

1 42
2
3 75

number guessFIG-1.18

Working through a
Trace 2

 Instruction Condition T/F Variables Output

1 42
2
3 75
4

number guess

guess = number F

FIG-1.19

Working through a
Trace 3

 Instruction Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F

number guess

guess = number

 guess < number

FIG-1.20

Working through a
Trace 4

 Instruction Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F
9
10 Too high

number guess

guess = number

 guess < number

FIG-1.21

Working through a
Trace 5

Hands On AGK BASIC: Algorithms 29

Since statement 13 contains a condition which is false, we return to statement 2,
executing it and then moving on to 3 where we enter 15 as our second guess (see
FIG-1.23).

This method of checking is known as desk checking or dry running.

Summary
± Computers can perform many tasks by executing different programs.

± An algorithm is a sequence of instructions which solves a specific problem.

± A program is a sequence of computer instructions which usually manipulates
data and produces results.

± Three control structures are used in programs :

 Sequence

 Selection

 Iteration

 Instruction Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F
9
10 Too high
11
12
13 F
2
3 15

number guess

guess = number

 guess < number

guess = number

FIG-1.23

Working through a
Trace 7

Activity 1.24

Create your own trace table for the number-guessing game and, using the same
test data as given in FIG-1.15 complete the testing of the algorithm.

Were the expected results obtained?

 Instruction Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F
9
10 Too high
11
12
13 F

number guess

guess = number

 guess < number

guess = number

FIG-1.22

Working through a
Trace 6

30 Hands On AGK BASIC: Algorithms

± A sequence is a list of instructions which are performed one after the other.

± Selection involves choosing between two or more alternative actions.

± Selection is performed using the IF statement.

± There are three forms of IF statement:

 IF condition THEN
 instructions
 ENDIF

 IF condition THEN
 instructions
 ELSE
 instructions
 ENDIF

 IF
 condition 1:
 instructions
 condition 2:
 instructions
 condition x :
 instructions
 ELSE
 instructions
 ENDIF

± Iteration is the repeated execution of one or more statements.

± Iteration is performed using one of three instructions:

 FOR number of iterations required DO
 instructions
 ENDFOR
 REPEAT
 instructions
 UNTIL condition

 WHILE condition DO
 instructions
 ENDWHILE

± A condition is an expression which is either true or false.

± Simple conditions can be linked using AND or OR to produce a complex
condition.

± The meaning of a condition can be reversed by adding the word NOT.

± Data items (or variables) hold the information used by the algorithm.
Data item values may be:

 Input
 Calculated
 Compared
 or Output

± Calculations can be performed using the following arithmetic operators:

 Multiplication *
 Addition +
 Division /
 Subtraction -

Hands On AGK BASIC: Algorithms 31

± The order of priority of an operator may be overridden using parentheses.

± Comparisons can be performed using the relational operators:

 Less than <
 Less than or equal to <=
 Greater than >
 Greater than or equal to >=
 Equal to =
 Not equal to <>

± The symbol -> is used to assign a value to a data item. Read this symbol as is
assigned the value.

± In programming, a data item is referred to as a variable.

± The divide-and-conquer strategy of stepwise refinement can be used when
creating an algorithm.

± LEVEL 1 solution gives an overview of the sub-tasks involved in carrying out
the required operation.

± LEVEL 2 gives a more detailed solution by taking each sub-task from LEVEL
1 and, where necessary, giving a more detailed list of instructions required to
perform that sub-task.

± Not every statement needs to be broken down into more detail.

± Further levels of detail may be necessary when using stepwise refinement for
complex problems.

± Further refinement may not be required for every statement.

± An algorithm can be checked for errors or omissions using a trace table.

32 Hands On AGK BASIC: Algorithms

Solutions
Activity 1.1

No solution required.

Activity 1.2
One possible solution is:

Fill A
Fill B from A
Empty B
Empty A into B
Fill A
Fill B from A

Activity 1.3
a) An algorithm
b) A computer program
c) mips (millions of instructions per second)

Activity 1.4
Choose club
Take up correct stance beside ball
Grip club correctly
Swing club backwards
Swing club forwards, attempting to hit ball

The second and third statements could be interchanged.

Activity 1.5
Player 1 thinks of a number
Player 2 makes a guess at the number
IF guess matches number THEN
 Player 1 says “Correct”
ENDIF
Player 1 states the value of the number

Activity 1.6
IF letter appears in word THEN
 Add letter at appropriate position(s)
ELSE
 Add part to hanged man
ENDIF

Activity 1.7
IF the crossbow is on target THEN
 Say “Fire”
ELSE
 IF the crossbow is pointing too high THEN
 Say “Down a bit”
 ELSE
 IF the crossbow is pointing too low THEN
 Say “Up a bit”
 ELSE
 IF the crossbow is too far left THEN
 Say “Right a bit”
 ELSE
 Say “Left a bit”
 ENDIF
 ENDIF
 ENDIF
ENDIF

Activity 1.8
IF
 you know the phrase:
 Make guess at phrase
 there are many unseen letters:
 Guess a consonant
ELSE
 Buy a vowel
ENDIF

Activity 1.9
Other possibilities are:

Both conditions are true
condition 1 is true and condition 2 is false

Activity 1.10
IF Ctrl key pressed AND O key pressed THEN
	 Request	filename
ENDIF

Activity 1.11
IF	double	thrown	OR	fine	paid	THEN	
 Player gets out of jail
ENDIF

 Activity 1.12
 a) Sequence
 Selection
 Iteration
b) Boolean expression
c) Binary selection Multi-way selection
d) No more than one of the conditions can be true at any
 given time.
e) Boolean operators are: AND, OR, and NOT.
f) A conditional statement is a statement which is
 executed only if a given set of conditions are met.
g) Both conditions must be true.

Activity 1.13
Throw dice
Add dice value to total

 Activity 1.14
Only one line, the FOR statement, would need to be changed,
the new version being:

 FOR 10 times DO

To call out the average, the algorithm would change to

Set the total to zero
FOR 10 times DO
 Throw dice
 Add dice value to total
ENDFOR
Calculate average as total divided by 10
Call out the value of average

Activity 1.15
In fact, only the first line of our algorithm is not repeated, so
the lines that need to be repeated are:

Player 2 makes an attempt at guessing the number
IF guess matches number THEN
 Player 1 says “Correct”
 ELSE
 IF guess is less than number THEN
 Player 1 says “Too low”
 ELSE
 Player 1 says “Too high”
 ENDIF
ENDIF

Activity 1.16
The FOR loop forces the loop body to be executed exactly 7
times. If the player guesses the number in less attempts, the
algorithm will nevertheless continue to ask for the remainder
of the 7 guesses.

Hands On AGK BASIC: Algorithms 33

Later, we’ll see how to solve this problem.

Activity 1.17
FOR 6 times DO
 Pick out ball
 Call out number on the ball
ENDFOR

Activity 1.18
FOR every card in player’s hand DO
 IF card is a knight THEN
 Remove card from hand
 ENDIF
ENDFOR

Activity 1.19
REPEAT
 Read next book title
UNTIL required title found OR no books remaining

Activity 1.20
Roll both dice
WHILE dice values don’t match DO
 Choose dice with lower value
 Throw chosen dice
ENDWHILE

Note that the WHILE line could have been written as
WHILE NOT dice values match DO

Activity 1.21
a) Iteration means executing a set of statements repeatedly.
b) FOR..ENDFOR, REPEAT..UNTIL and WHILE..
 ENDWHILE
c) The FOR..ENDFOR structure.
d) The WHILE..ENDWHILE structure.
e) The REPEAT..UNTIL structure.

Activity 1.22
a) Its name and value.
b) From outside the system. In a computerised setup, this is
 often entered from a keyboard.
c) The relational operators are:
 < (less than)
 <= (less than or equal to)
 > (greater than)
 >= (greater than or equal to)
 = (equal to)
 <> (not equal to)

Activity 1.23
The LEVEL 1 is coded as:

1. Draw grids
2. Add ships to left grid
3. REPEAT
4. Call grid position(s)
5. Respond to other player’s call(s)
6. UNTIL there is a winner

The expansion of statement 4 would become:

4.1 Call grid reference
4.2 Get reply
4.3 WHILE reply is HIT DO
4.4 Mark position in second grid with X
4.5 Call grid reference
4.6 Get reply

4.7 ENDWHILE
4.8 Mark position in second grid with 0

The expansion of statement 5 would become:

5.1 REPEAT
5.2 Get other player’s call
5.3 IF other player’s call matches position of ship THEN
5.4 Call HIT
5.5 ELSE
5.6 Call MISS
5.7 ENDIF
5.8 UNTIL other player misses

Activity 1.24

 Instruction Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F
9
10 Too high
11
12
13 F
2
3 15
4 F
6
7 T
8 Too low
11
12
13 F
2
3 42
4 T
5 Correct
12
13

number guess

guess = number

 guess < number

guess = number

guess = number

guess < number

guess = number

guess = number

guess = number T

34 Hands On AGK BASIC: Algorithms

Hands On AGK BASIC: Starting AGK 35

In this Chapter:

T Understanding Compilation

T Getting Started with AGK

T Creating a First Project

T Installing an App on a Device

T Creating Output

T Adding Comments

T Changing Output Colour, Size and Spacing

T Adjust an App Window’s Properties

T Adding a Splash Screen

Starting AGK

36 Hands On AGK BASIC: Starting AGK

Programming a Computer

Introduction
In the last chapter we created algorithms written in a style known as structured
English. But if we want to create an algorithm that can be followed by a computer,
then we need to convert our structured English instructions into a programming
language.

There are many programming languages; C, C++, Java, C#, and Visual Basic being
amongst the most widely used. So how do we choose which programming language
to use? Each language has its own strengths. For example, Java allows multi-platform
programs to be created easily, while C is ideal for creating housekeeping applications.
So, when we choose a programming language, we want one that is best suited to the
task we have in mind.

We are going to use a programming language known as AGK BASIC. This language
was designed specifically for writing computer games which can then be used on a
wide range of devices - anything from your regular computer to a tablet or even a
smartphone. Because of this, AGK BASIC has many unique commands for displaying
graphics on various screen resolutions and for handling a wide range of input methods
- anything from a standard mouse to a touch screen or an accelerometer.

The Compilation Process
When you begin the process of creating a game using AGK, several files are
automatically created. One of these files is designed to hold your program code; the
others hold additional details required by the project. These extra files have their
contents created automatically by AGK so we need not worry about them at this
stage.

Because each game that we create consists of several files, we refer to this collection
of files as a project. One of these files (always named main.agc in every project)
contains the actual program code.

Each new project is automatically assigned its own folder.

As we will soon see, the programming language AGK BASIC uses statements that
retain some English terms and phrases. This means we can look at the set of
instructions and make some sense of what is happening after only a relatively small
amount of training.

Unfortunately, the processor inside a digital device (computer, tablet, or smartphone)
understands only instructions given in the form of a sequence of 1’s and 0’s in a
format known as machine code. The device has no capability of directly following
a set of instructions written in AGK BASIC. But this need not be a problem; we
simply need to translate the AGK BASIC statements into machine code (just as we
might have a piece of text translated from Russian to English).

We begin the process of creating a new piece of software by mentally converting our
structured English algorithm (which we will have already created) into a sequence of
AGK BASIC statements. These statements are entered using a text editor which is
nothing more than a simple word-processor-like program allowing such basic
operations as inserting and deleting text. Once the complete program has been
entered, we get the machine itself to translate those instructions from AGK BASIC

A housekeeping program
is one which performs
mundane chores such
as file copying, data
communications, etc.
and has little user input.

Hands On AGK BASIC: Starting AGK 37

into machine code. The original program code is known as the source code; the
machine code is known as the object code and the saved version of this as the
executable file.

The translator (known as a compiler) is simply another program installed in the
computer. After typing in our program instructions, we feed these to the compiler
which produces the equivalent instructions in machine code. These instructions are
then executed by the computer and we should see the results of our calculations
appear on the screen (assuming there are output statements in the program).

The compiler is a very exacting task master. The structure, or syntax, of every
statement must be exactly right. If you make the slightest mistake, even something
as simple as missing out a comma or misspelling a word, the translation process will
fail. When this happens in AGK, a window appears giving details of the error. A
failure of this type is known as a syntax error - a mistake in the grammar of your
commands. Any syntax errors have to be corrected before you can try compiling the
program again.

When you are working on a project, it is best to save your work at regular intervals.
That way, if there is a power cut, you won’t have lost all your code!

When the program code is complete, we compile our program (translating it from
source code to object code). When the translation process is finished, yet another file
is produced. This new file (which has an .exe extension), contains the object code. To
run our program, the source code in the executable file is loaded into the computer’s
memory (RAM) and the instructions it contains are carried out. The whole process is
summarised in FIG-2.1.

If we want to make changes to the program, we load the source code into the editor,
make the necessary modifications, then save and recompile our program, thereby
replacing the old version of source and executable files.

FIG-2.1

The Compilation
Process

Start
new project

AGK creates
all �les

Enter code
in main.agc

Compile
source code

Object
code

Error
messages

Run
program

38 Hands On AGK BASIC: Starting AGK

Activity 2.1

a) What type of instructions are understood by a computer?

b) What piece of software is used to translate a program from source code to
object code?

c) Misspelling a word in your program is an example of what type of error?

Hands On AGK BASIC: Starting AGK 39

Starting AGK

Introduction
AGK is an Integrated Development Environment (IDE) software package designed
to create 2D games that can then be run on various hardware devices. IDE simply
means that the editing, compiling and testing are all achieved while working from
within a single package.

AGK allows programs to be written in either BASIC or C++. This book covers only
the BASIC language aspect of AGK.

AGK was created by Lee Bamber, CEO of The Game Creators Ltd and was derived
from his earlier creation, DarkBASIC which is a programming language designed to
develop games for the PC platform only.

Starting Up AGK
Once you’ve installed AGK, running the package will present you with the screen
shown in FIG-2.2.

At the centre of the application window is the Tip of the Day window. If you don’t
want this to appear every time you start up AGK, just deselect the Show tips at
startup check box. Once you close the Tip of the Day window, you are left with the
three main areas of the AGK IDE (see FIG-2.3):

 The Main Edit Window - This where your program code is
 displayed once you start working on a
 project.
 The Project Panel - This displays a tree structure of the files
 within the project(s) currently open. It
 only shows the names of those files
 containing code; the other files created by
 a project are not listed.
 Compiler Output Panel - This panel (labelled as Logs and others)
 is used primarily to display information
 output by the compiler.

FIG-2.2

The AGK Startup
Screen

40 Hands On AGK BASIC: Starting AGK

 The steps required to create your first project are shown in FIG-2.4.

FIG-2.4

Creating a New
Project

Since this is our first project, we
click on the Create a new Project
option in the Main Edit Window
(File|New|Project would work too).

This displays the Create from
Template window which offers three
different layout styles for your new
project’s display.

For this project, AGK Generic project
is selected by double clicking that
option.

This starts up the AGK project wizard.
The first screen simply states that the
wizard has started.

Skip this page next time

Select to skip
this page on any other

new projects

Double-click
this option

FIG-2.3

AGK Layout

Main
Edit Window

Projects
Panel

Compiler
Output

Hands On AGK BASIC: Starting AGK 41

The new window created by running the sample program can be closed in the standard
way by clicking on the X button at the top right.

Activity 2.2

Before you start up AGK, create a main folder called HandsOnAGK on your
disk drive. We’ll use this as the main folder for all the AGK projects we are
going to create throughout this book.

Load AGK then create, compile, and run your first project (named
FirstProject) exactly as described in FIG-2.4, closing the app window once it
has been run.

This project
will be used for
the remaining
programming
activities in this
chapter.

The second page of the wizard is
where the project name and folder
are selected. Other details are filled in
automatically.

The Projects Panel now shows the
new project and a folder called
Sources.

Enter
project name

Select
folder

Project name

Clicking on the Sources folder reveals
the two source code files used by the
project. main.agc will contain your
code.

Double clicking on main.agc in the
Project Panel opens its contents in a
tabbed panel within the main edit
window.

Your code
is stored in

this file and its
code will be
displayed

In fact, the AGK wizard has created a
simple program within main.agc.
This code can be run by pressing the
Run button.

The sample program opens a small
window to display its output.

Double-click
main.agc

Project title:
FirstProject

Folder to create project in:
C:\AGKProject\AGKProgra

 Ë From now on
we’ll refer to this as
the CRB button.

 Ë The project will
create a new subfolder
off the folder you select
here. That subfolder will
have the same name as
your project.

FIG-2.4
(continued)

Creating a New
Project

42 Hands On AGK BASIC: Starting AGK

You may have noticed that the AGK software displayed messages in the compiler
output area at the bottom of the screen (titled as Logs & others) to tell you that the
app had been compiled and broadcast.

The Program Code
FIG-2.5 shows the code in main.agc that was automatically generated for us.

The line numbers that also appear in the edit window are not part of the code and are
only there to help you identify the position of any line within the code.

Let’s take a look at the code that was already generated for us and see what each of
the lines means. The first lines are:

rem
rem AGK Application
rem

rem A Wizard Did It!

Blank lines and any lines starting with the term rem (short for REMARK) are treated
as a comment by the compiler. Comments are there only for the benefit of us humans
who happen to read the program code and are entirely ignored by the compiler when
translating the instructions into machine code. Good comments will tell us the overall
aim of the program as well as the purpose of individual sections of code. Comments
can appear anywhere within a program.

do

loop

These two terms mark the start and end of an infinite loop - notice that no condition
is given. Most AGK programs contain this loop which is designed to make sure all
the code between these lines is continually executed until the user closes the app
window. Without a loop of some type your program would start and finish so quickly
that you would never have time to see what was displayed in the app window.

Print (“Hello world”)

The Print() statement is used to state that some piece of information is to be
displayed in the app window. The information itself is specified within a set of round
brackets (more properly called parentheses). When that information contains letters
(as opposed to numbers), then those letters must be enclosed in double quotes. Hence,
the statement given above is an instruction to display the words Hello world on the
screen. Note that the quotes themselves are not displayed.

Sync()

FIG-2.5

The Generated
Code

rem
rem AGK Application
rem
rem A Wizard Did It!
do
 Print(“hello world”)
 Sync()
loop

Hands On AGK BASIC: Starting AGK 43

The Sync() statement is a command to update the contents of the app window. If you
make any changes to what is displayed on the screen (for example, by executing a
Print() statement), then you need to follow this with the statement Sync(). Without
Sync() the screen display will not be updated.

Notice that the Sync() statement makes use of parentheses although no values are
placed within them. However, omitting these parentheses would create a syntax
error.

Using the Compile button and then Run button separates the compilation and
execution stages of the process into two distinct steps.

Running Your App to a Tablet or Smartphone
Although producing a true app for your smartphone or tablet is quite complex, you
can, nevertheless, watch your app run on such a device. To do this, you need to first
load the app AGK Player from the app store used by your device. For example, on an
Android device, you will find AGK Player in Google Play.

With AGK Player running on your target device and the app code you want to run on
it loaded into AGK on your PC, press AGK’s Compile and Broadcast button.

This will transfer the AGK program from the PC to your device through your WiFi
setup. That means you either need to have a WiFi router attached to your PC or be
using a laptop with built-in WiFi. The AGK Player app will detect your program
being broadcast, download it, and run it on your device.

However, things are a bit more complicated if you have an Apple device. Apple won’t
support the AGK Player in their app store. As an alternative you can download the
AGK Viewer from their store. The viewer isn’t ideal but it will let you see a low-
grade version of your app running on an Apple device. To run the AGK Player on
your Apple device you will need to register as a developer. Details of how to do this
are on the Game Creators’ web site.

Your program is not yet a true app - you can’t save it on your device - it can only be
executed using AGK Player. To create a true app for your device visit The Game
Creators’ web site for details.

Activity 2.3

Change the Print() statement within main.agc so that the text enclosed in
the double quotes reads My first app. This time click the Compile then Run
buttons to compile and run the modified program. Was the new text displayed
in the app window?

Select File|Save to save your modified program.

Compile and
Broadcast Button

Activity 2.4

Make sure you have the AGK app player running on your device.

With the latest version of the project you created in Activity 2.3 showing on the
AGK IDE, press the Compile and Broadcast button. Check that the program is
now showing on your device.

Compile Button

Run Button

44 Hands On AGK BASIC: Starting AGK

First Statements in AGK BASIC

Introduction
Learning to program in AGK BASIC is very simple compared to other languages
such as C++ or Java. Unlike most other programming languages, it has no rigid
structure that the program itself must adhere to.

Now we need to start looking at the formal statements allowed in AGK BASIC and
see how they can be used in a program.

Print()
We’ve already come across the Print() statement in our first program, so we already
know that it is used to display information on the screen, but we need to know it’s
exact format so that we don’t create a syntax error by making a mistake in constructing
the statement. The format of the Print() statement is shown in FIG-2.6.

This type of diagram is known as a syntax diagram for the obvious reason that it
shows the syntax of the statement.

Each enclosed value in the diagram is known as a token (there are four tokens in the
Print() statement). When you use a Print() statement in your program, its tokens
must conform to those shown in the diagram. Some of the tokens must be an exact
match for those in the diagram: Print, (, and) while others (only value in this case)
have their actual value determined by the programmer.

Fixed values are shown in rounded-corners boxes, user-defined values are shown in
regular boxes. In the case of the Print() statement, the term value is used to mean
an integer value, a real value or a string value.

So, using the syntax diagram as a guide, we can see that the following are valid
Print() statements:

Print(“Hello world”)
Print(12)
Print(0)
Print(-34.6)

while the following are not:

 Print 36 (parentheses are missing)
 Print(Goodbye) (no quotes)
 Print(‘Help!’) (single quotes used)

FIG-2.6

Print()

Print ()value

Activity 2.5

Which of the following are NOT valid Print() statements:

a) Print(“-9.7”)
b) Print(0.0)
c) Print(23, 51)

Hands On AGK BASIC: Starting AGK 45

Spaces

We can add spaces to a statement as long as those spaces do not split a single token
into separate parts. So, for example, it is quite valid to write the line

 Print (123)

since each token can easily be identified, but

 Pr int (12 3)

is not acceptable because the Print and 123 tokens have both been split into two
parts.

Spaces can be omitted as long as doing so does not make it impossible to tell where
one token ends and another begins. This is really only a problem when two or more
adjacent tokens are constructed entirely from letters or numbers. So if we have a
statement which begins with the code

 if x = 3

then writing

 ifx=3

would be invalid because the compiler would not be able to recognise the if and x
as two separate tokens. On the other hand,

 Print(123)

is correct because no adjacent tokens are constructed from alphanumeric characters.

Multiple Output

When we use two or more Print() statements, each value printed will be displayed
on a separate line. For example, when the lines

 Print(“Hello”)
 Print(“Goodbye”)

are included in a program, they will create the output

 Hello
 Goodbye

 Ë Alphabetic and
numeric characters are
collectively known
as alphanumeric
characters.

Activity 2.6

Modify your program so that the main code now reads
 do
 Print(“First line”)
 Print(“Second line”)
 Sync()
 loop

Compile and run the program.

You may want to
save your project
after each Activity by
selecting

File|Save

46 Hands On AGK BASIC: Starting AGK

Each message is on a separate line because the Print() statement always displays a
new line character after the value specified and this causes the screen cursor to move
to a new line.

Adding Comments
It is important that you add comments to any programs you write. These comments
should explain the purpose of the program as a whole as well as what each section of
code is doing. It’s also good practice, when writing longer programs, to add comments
giving details such as your name, date, programming language being used, hardware
requirements of the program, and version number.

In AGK BASIC there are four ways to add comments:

 Add the keyword rem. The remainder of the line becomes a comment (see
 FIG-2.7).

 Add an apostrophe character (you’ll find this on the top left key, just next to
 the 1). Again the remainder of the line is treated as a comment (see FIG-2.8).

 Add two forward slashes followed by the descriptive text (see FIG-2.9).

 Add several lines of comments by starting with the term remstart and
 ending with remend. Everything between these two words is treated as a
 comment (see FIG-2.10).

This last diagram introduces another symbol - a looping arrowed line. This is used to
indicate a section of the structure that may be repeated if required. In the diagram
above it is used to signify that any number of comment lines can be placed between
the remstart and remend keywords. For example, we can use this statement to create
the following comment which contains three lines of text:

 REMSTART
 This program is designed to play the game of
 battleships.
 Two peer-to-peer computers are required.
 REMEND

PrintC()
The PrintC() statement is similar to Print() but does not add a new line character
to the output. This means that each PrintC() statement’s output is positioned on the
screen immediately after the previous value. Hence,

 PrintC(“A”)

FIG-2.7

rem rem text

FIG-2.8

Apostrophe
Comments

text`

FIG-2.9

// Comments

text//

FIG-2.10

remstart..remend

remstart

text

remend

Hands On AGK BASIC: Starting AGK 47

 PrintC(“B”)

would display AB

Other Statements which Modify Output
Other statements allow us to make various changes to how the information appearing
on our screen is presented. We can change its colour, size, transparency and even the
space between the characters.

Before we get started on instructions involving colour, perhaps it might be useful to
go over a few basic facts about colour.

All colours you see on a monitor or TV are derived from the three primary colours
red, green and blue. By varying the brightness of each of these three colours we can
achieve almost any colour or shade the eye is capable of seeing. For example, mixing
just red and green gives us yellow; blue and green gives us a colour called cyan, and
blue and red gives magenta (see FIG-2.11).

Notice that all three colours together give white. The absence of all three colours
gives black.

By varying the intensity (brightness) of each primary colour, we can create any
shades or hues we require. AGK allows the intensity to vary between 0 (no colour)
to 255 (full intensity). So pure white is achieved by setting all three colours to an
intensity value of 255. For shades of grey, all three colours must have identical
brightness values, but the lower that value, the darker the shade of grey.

SetPrintColor()

The SetPrintColor() sets the colour of all output created using the Print() and
PrintC() statements. It can also be used to set the transparency of the text.

The statement’s format is shown in FIG-2.12.

Activity 2.7

Change the two Print() statements in your program to PrintC() statements
and observe the difference in output when the program is run.

FIG-2.11

Colours

Green

CyanYellow

White

Red BlueMagenta

FIG-2.12

SetPrintColor() SetPrintColor ()ired , igreen , iblue itrans,[]

48 Hands On AGK BASIC: Starting AGK

This syntax diagram introduces the use of square brackets. Tokens within square
brackets are optional and can be omitted when using the statement.

In the above diagram:

 ired is an integer value giving the strength of the red component
 within the colour. This value should be in the range 0 to 255.
 0 - no red; 255 - full red.

 igreen is an integer value (0 to 255) giving the strength of the green
 component.

 iblue is an integer value (0 to 255) giving the strength of the blue
 component.

 itrans is an integer value (0 to 255) giving the amount of transparency.
 0 - invisible, 255 - opaque.

Since the transparency value is optional and therefore can be omitted (in which case
transparency stays at its current setting), we can use the statement simply to set the
colour of any text being displayed by the Print() or PrintC() statements.

For example,

 SetPrintColor(0,0,0) rem *** sets text to black
 SetPrintColor(255,255,255) rem *** sets text to white
 SetPrintColor(255,0,0) rem *** sets text to red

The SetPrintColor() statement must appear before the Print() or PrintC()
statements whose output you wish to affect.

The statement only takes effect after a Sync() statement is executed.

Once the colour has been set, all subsequent output will be in the specified colour.
This means that there is no real need to place the SetPrintColor() statement inside
the do .. loop structure where it will be executed every time the loop is repeated.
Instead, that line of code can be moved to immediately before the do statement.
Placed here, the statement will be performed only once, at the start of the program.

If there was no change to the output, what was the point of moving the statement?

 Ë The value names
start with i to indicate
that integer values are
required. Where a real
number is needed, the
value name will start
with an f (for float).
String values will start
with an s.

Activity 2.8

Add a SetPrintColor() statement to your program, placing it immediately
before your two PrintC() statements. Choose any colour values you wish.

Compile and run the program to check that the output is correct.

Activity 2.9

Reposition your SetPrintColor() statement, placing it on the line above do.

Compile and run the program again.

There should be no change to the output.

Hands On AGK BASIC: Starting AGK 49

The more lines of code that need to be executed, the slower a program runs. Let’s say
the statements within the loop are executed 200 times before you terminate the
program. With the SetPrintColor() inside the loop, it would have been executed
200 times; with it outside the loop it is executed only once - so the program becomes
more efficient.

If we include a value for itrans when we use SetPrintColor(), we can set the
transparency of all text on the screen. The default transparency is 255, meaning the
output is fully opaque. With a value of zero, the text would be invisible.

SetPrintSize()

The SetPrintSize() statement (see FIG-2.13) sets the size of the text displayed by
a Print() or PrintC() statement.

where:

 size is a real number setting the size of characters. The default value
 for characters is about 3.5.

The reason that the text seems blurred when it is enlarged is that the text itself is
stored as an image. Enlarging that image causes blurring.

SetPrintSpacing()

This statement (see FIG-2.14) adjusts the spacing between the characters shown on
the screen.

where:

 gap is a real number giving the gap between characters. The default

Activity 2.10

Modify the SetPrintColor() statement in your program, adding 126 as the
transparency value.

Run the program and see what effect the changes have made to the output.

Try other transparency values to see their effect.

FIG-2.13

SetPrintSize() SetPrintSize ()size

Activity 2.11

Add the line

 SetPrintSize(8.6)

immediately after your SetPrintColor() statement (reset the transparency
value to 255).

Compile and run the program. What do you notice about the quality of the text
produced?

FIG-2.14

SetPrintSpacing() ()gapSetPrintSpacing

50 Hands On AGK BASIC: Starting AGK

 is zero. Larger values widen the gap; negative values cause the
 gap to decrease and even to make letters overlap.

Message()

Another way of displaying text on the screen is to use the Message() statement. This
creates a more prominent output, placing the text in a separate window. The format
of the Message() statement is shown in FIG-2.15.

where

 stext is a string containing the message to be displayed.

For example, the line

 Message(“hello world”)

produces the output shown in FIG-2.16 when run on a PC.

The exact style of the window produced depends on the device on which your app is
being run.

SetClearColor()

You will have noticed that the window created by your AGK app always has a black
background. This default color can be changed using the SetClearColor() statement
which has the format shown in FIG-2.17.

where:

 ired is an integer value (0 to 255) giving the strength of the red
 component.

 igreen is an integer value (0 to 255) giving the strength of the green
 component.

Activity 2.12

Add a SetPrintSpacing() statement to your program, placing it before the do
.. loop structure. Set the gap size to 5.5.

Compile and run the program to check how the output is changed.

Change the value used to -2.5 and observe the effect on the output.

FIG-2.15

Message() Message ()stext

FIG-2.16

A Typical
Message Window

FIG-2.17

SetClearColor() SetClearColor ()ired igreen iblue

Hands On AGK BASIC: Starting AGK 51

 iblue is an integer value (0 to 255) giving the strength of the blue
 component.

ClearScreen()

The SetClearColor() statement only works when followed by a Sync() or a
ClearScreen() statement which has the same effect. The format for the
ClearScreen() statement is given in FIG-2.18.

So to create a yellow background on the screen, we would start our program with the
lines:

 SetClearColor()
 ClearScreen()

Often this statement will appear at the start of a program, but you may wish to change
the colour at a later stage perhaps to indicate that a game has entered a new phase.

Positioning the Print() Statements

We have placed the various statements affecting the colour, size and spacing of our
text before the do..loop structure on the basis that these commands need only be
performed once. So you may be tempted to think that surely we can do the same thing
with the Print() and Sync() statements since the displayed text remains unchanged
throughout the running of the program. Let’s see what happens when we try this.

As you can see from the output produced, for a simple program such as this, moving
the statements has had no effect on the output produced. We are left with an empty
do..loop which makes sure that the program does not terminate before we click the
app window’s close button.

Although we now know that it is possible to place the Print() and Sync() statements
outside the do loop it is usually not a good idea to do so in any but the simplest
programs since it can create other problems which we will discuss in a later chapter.

Summary
■ Programs are written using a programming language.

■ Programming language code must be translated into machine code before the
program can be executed by the computer.

■ The stored program code is known as the source file; the stored machine code

FIG-2.18

ClearScreen()

ClearScreen ()

Activity 2.13

Change the background of the app window to red and test your program.

Activity 2.14

Move the PrintC() and Sync() statements in your program so that they are
positioned immediately before the do statement.

What effect does this have when you run your program?

52 Hands On AGK BASIC: Starting AGK

as the object file.

■ Each line of a program must conform to the rules of syntax.

■ An error in how a line is written is known as a syntax error.

■ AGK programs can be written in BASIC or C++.

■ The collection of files created when writing an AGK app is known as a project.

■ The main file in an AGK project is main.agc which contains the program code.

■ The AGK development package is an Integrated Development Environment.
This allows edit, compiling and testing to be performed from within the same
program.

■ To download an app to your digital device, the player must be installed and
running on that device and the app broadcast from the AGK IDE.

■ When an app is being tested it creates an app window.

■ Comments can be added to your code using rem, `, or remstart..remend.

■ Comments help us understand the purpose of a piece of code but are ignored
by the compiler.

■ Use Print() to display information on the screen.

■ Use PrintC() to display information without moving to a new line afterwards.

■ Use SetPrintColor() to set the colour used when displaying text.

■ Use SetPrintSize() to set the size of future text output.

■ Use SetPrintSpacing() to set the spacing between characters in future text
output.

■ Use Message() to display a message in a separate window.

■ Use SetClearColor() to set a background colour for the app screen.

Hands On AGK BASIC: Starting AGK 53

The Second Source File
Every project you create actually contains a second .agc file. You can see it listed in
the Projects Panel immediately below main.agc.

Although you are not free to add lines of code to this file as you can with main.agc,
you are allowed to change the values given. Those values determine the title and
dimensions of the window in which your app appears when run under Microsoft
Windows. For example, the window of a typical program (see FIG-2.16) reflects the
details given in setup.agc.

By changing the values specified in the first three lines of setup.agc (ignoring the rem
lines), we can change the characteristics of the window.

These characteristics given in setup.agc only affect the layout of the window on your
PC. Other statements (covered later) need to be included in your program to set the
app screen size on a tablet or phone.

FIG-2.16

The App Window The window’s

title

Height

Width

Activity 2.15

Double click setup.agc in the Projects Panel to display its code. Change the
appropriate existing lines to read:

 title=My First App
 width=320
 height=480

Make sure the only spaces with these lines are those in the title.

Compile and run your program to see what changes this has made.

54 Hands On AGK BASIC: Starting AGK

A Splash Screen
A common feature of many games is a splash screen. A splash screen is simply a
graphic that displays for a few moments at the start of the game. Typically a splash
screen will contain an image giving the flavour of the game play that is about to
follow as well as the name of the game and the publishing company.

AGK allows you to add a splash screen to your game without any coding whatsoever.

If you load Windows Explorer and have a look in the folder created by AGK to hold
the files belonging to your project (HandsOnAGK/FirstProject), you should see
contents similar to that shown in FIG-2.17.

The splash screen graphic file must be placed in the project’s main folder. The file
must be in PNG format and be called AGKSplash.png. No other name is acceptable.
The image is best set to the same size as the window dimensions (in our case, 480 x
320). An example of a splash screen is shown in FIG-2.18.

FIG-2.17

AGK Project’s
Files

Rather than create
your own image,
you can use the
one supplied in
the downloads that
accompany this
book.

FIG-2.18

A Splash Screen

Activity 2.16

Open a paint program you have available and create a 480 pixels high by 320
pixels wide image. Save the file in PNG format in the folder HandsOnAGK/
FirstProject naming the file AGKSplash.png.

In AGK, recompile your program and run it. You should see your splash screen
appear when the app window first opens.

Hands On AGK BASIC: Starting AGK 55

Starting a New Project
When you first start up AGK for a work session, we’ve already seen that it will give
you the option to create a new project. Should you want to create more new projects
during that session, you can do so from the main menu (File|New|Project).

However, the Projects Panel will display all of the projects you have been using (see
FIG-2.19).

Having several projects open at the same time can be a bit confusing when you first
start using AGK, so the best option is to close projects that you are not currently
working on. FIG-2.20 shows how to close a project from the Projects Panel.

From now on, make sure you always close any old project before starting a new one.

FIG-2.19

Multiple Projects

Three
projects

FIG-2.20

Multiple Projects

Right-click
cursor over project

name...
...and select
Close project

56 Hands On AGK BASIC: Starting AGK

App Window Properties

Measurements
By default, AGK apps use a percentage measurement system. This means that no
matter the actual dimensions of the app window, AGK always treats the width as
100% and the height as 100% (see FIG-2.21).

When you want to position an item on the screen it is done using percentage
measurements. For example, the position (50,50) represents the middle of the app
window irrespective of the window’s actual dimensions.

Percentage values are also used when setting the size of various visual elements. For
example, earlier in this chapter we made use of the SetPrintSize() statement to
resize the text created by any subsequent Print() statement. The value supplied to
this statement represents the high of the text as a percentage of the screen height. Of
course, this means that text set to a height of 4 will appear taller in a long window
and smaller in a short window. In fact, you can see that in the “Hello world” text
visible in FIG-2.21 above.

All programs in this book use the default percentage system.

SetDisplayAspect()

When using the percentage measuring system, the setup.agc file is used to set the
actual size of the app window on your PC, but if you intend to transfer that app to
another device such as a smartphone or tablet, you should explicitly set the aspect
ratio (width to height) using the SetDisplayAspect() statement (see FIG-2.22).

where:

 ratio is a real number giving the width to height ratio. For example,
 iPhone and iPad have an aspect ratio of 4.0/3.0 (1.3333).

Use zero as the fratio value if you want the width and height values in the setup.agc
file to be used to determine the aspect ratio. Use -1 if you want the app to fill the
whole screen irrespective of aspect ratio. Using this last option may distort visual

FIG-2.21

The Screen’s Percentage
Measurement System

100%

100%

100%

100%

FIG-2.22

SetDisplayAspect() SetDisplayAspect ()ratio

Hands On AGK BASIC: Starting AGK 57

elements of the app if the device’s aspect ratio is different to that used when developing
the app (like watching an old 4/3 TV program on your widescreen TV).

SetVirtualResolution()

If you would rather work with a resolution based on pixels, have your program
execute the SetVirtualResolution() statement when it starts up. The statement’s
format is shown in FIG-2.23.

where:

 iwidth is an integer value giving the nominal width of the app window
 in pixels.

 iheight is an integer value giving the nominal height of the app window
 in pixels.

If you were writing an app for the original iPhone, you would set the resolution to
320×480 using the line:

SetVirtualResolution(320,480)

When you are developing your app on your PC, the app window will take on the
actual size specified in the SetVirtualResolution() statement. However, when you
transfer the app to another device, the app will expand (or contract) to fit that device’s
screen. For example, if you run your 320x480 app on a newer iPhone with its 640x960
resolution, your AGK will automatically expand to fill the full screen.

This is why the term virtual resolution is used; this development resolution may in
fact be different from the actual resolution used when the app is running on a device
other than your PC.

The only problem arises when the device on which your app is running has a different
aspect ration (width / height) than that specified in the SetVirtualResolution()
statement. Expanding the app’s resolution from 320x480 to 640x960 isn’t a problem
because both have an aspect ratio of 3/4. But if we were to try and run the same app
on an original Asus EEE Transformer which has a resolution of 1280x800 (an aspect
ratio of 8/5) then we have a problem. Expanding the app to fill a 8/5 screen would
cause distortion of any images being displayed (circles would become ovals!). AGK
handles this by creating as large a 3/4 ratio images as possible and adding a border to
the remainder of the screen.

When you use SetVirtualResolution() in your app, all screen positions and sizes
are given in virtual pixels.

SetBorderColor()

You can specify the border colour to be used when you app runs on a device with a
different aspect ratio to that specified in the app’s code using the SetBorderColor()
statement (see FIG-2.24).

FIG-2.23

SetVirtualResolution() SetVirtualResolution ()iwidth iheight

FIG-2.24

SetBorderColor() SetBorderColor ()ired igreen iblue

58 Hands On AGK BASIC: Starting AGK

where:

 ired is an integer variable (0 to 255) giving the intensity of the red
 component of the border colour to be used. 0: no red; 255: full
 red.

 igreen is an integer variable (0 to 255) giving the intensity of the green
 component of the border colour. 0: no green; 255: full green.

 iblue is an integer variable (0 to 255) giving the intensity of the blue
 component of the border colour. 0: no blue; 255: full blue.

To create a grey border we could use a statement such as:

 SetBorderColor(120,120,120)

SetWindowTitle()

For apps that are running in a windows based environment (on PCs or Macs), you
can set the title that appears at the top of the window using the SetWindowTitle()
statement (see FIG-2.25).

where

 stext is a sting containing the text to appear in the window title bar.

A typical statement would be:

 SetWindowTitle(“Jigsaw Game”)

Further screen-handling statements are covered in Chapter 19.

Summary
■ By default, AGK uses a percentage coordinate system within the app window.

■ Use SetVirtualResolution() to use a virtual pixel coordinate system.

■ Use SetDisplayAspect() to set the width to height ratio of the screen/window.

■ Use SetBorderColor() to specify a colour for any part of the physical screen
ot included in the app’s output area.

■ Use SetWindowTitle() to specify a title for any windows-based app.

FIG-2.25

SetWindowTitle() SetWindowTitle ()stext

Hands On AGK BASIC: Starting AGK 59

Solutions
Activity 2.1

a) Machine code instruction. These are a stored as a
 sequence of binary digits.
b) A compiler.
c) A syntax error.

Activity 2.2
No solution required.

Activity 2.3
Your code should now read (rem statements have been
omitted):

 do
	 	 Print(“My	first	app”)
 Sync()
 loop

Compile and run your code.

The new text should be displayed in the app window when
the program is run.

Select File|Save

Activity 2.4

Activity 2.5
a) Valid. Any characters can be enclosed in quotes -
 including numeric ones.

b) Valid. A real number.

c) Invalid. Only a single value can be displayed.

Activity 2.6
Your program code should be:

 do
 Print(“First line”)
 Print(“Second line”)
 Sync()
 loop

The output should be:
 First line
 Second line

Activity 2.7
Program code:

 do
 PrintC(“First line”)
 PrintC(“Second line”)
 Sync()
 loop

The output should be:
 First lineSecond line

If you want a space between the two outputs, you would need
to include a space inside the quotes at the end of the first
piece of text or at the start of the second.

Activity 2.8
Program code (your colour values will be different):

 do
 SetPrintColor(255,255,0) rem *** yellow ***
 PrintC(“First line”)
 PrintC(“Second line”)
 Sync()
 loop

Activity 2.9
Program code (your colour values will be different):

 SetPrintColor(255,255,0) rem *** yellow ***
 do
 PrintC(“First line”)
 PrintC(“Second line”)
 Sync()

 loop

Activity 2.10
Program code (your colour values will be different):

 SetPrintColor(255,255,0,126) rem *** yellow ***
 do
 PrintC(“First line”)
 PrintC(“Second line”)
 Sync()
 loop

The text output will appear darker as the black background
shows through.

Activity 2.11
Program code (your colour values will be different):

 SetPrintColor(255,255,0,126) rem *** yellow ***
 SetPrintSize(8.6)
 do
 PrintC(“First line”)
 PrintC(“Second line”)
 Sync()
 loop

The text will appear larger but somewhat blurred.

Activity 2.12
Program code (your colour values will be different):

 SetPrintColor(255,255,0,126) rem *** yellow ***
 SetPrintSize(8.6)
 SetPrintSpacing(5.5)
 do
 PrintC(“First line”)
 PrintC(“Second line”)
 Sync()
 loop

The characters in the output text will be widely spaced.

The SetPrintSpacing() line should then be changed to
SetPrintSpacing(-2.5)

The characters will now bunch together.

Activity 2.13
Program code:

 SetClearColor(255,0,0)
 ClearScreen()
 SetPrintColor(255,255,0,126) rem *** yellow ***
 SetPrintSize(8.6)
 SetPrintSpacing(-2.5)
 do
 PrintC(“First line”)
 PrintC(“Second line”)
 Sync()
 loop

60 Hands On AGK BASIC: Starting AGK

Activity 2.14
Program code:

 SetClearColor(255,0,0)
 ClearScreen()
 SetPrintColor(255,255,0,126) rem *** yellow ***
 SetPrintSize(8.6)
 SetPrintSpacing(-2.5)
 PrintC(“First line”)
 PrintC(“Second line”)
 Sync()
 do

 loop

The output remains unchanged.

Activity 2.15
The app window title and dimensions should be changed.

Activity 2.16
No solution required.

